357 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			357 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef __KVM_X86_MMU_H
 | |
| #define __KVM_X86_MMU_H
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "cpuid.h"
 | |
| 
 | |
| #define PT64_PT_BITS 9
 | |
| #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 | |
| #define PT32_PT_BITS 10
 | |
| #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 | |
| 
 | |
| #define PT_WRITABLE_SHIFT 1
 | |
| #define PT_USER_SHIFT 2
 | |
| 
 | |
| #define PT_PRESENT_MASK (1ULL << 0)
 | |
| #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 | |
| #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 | |
| #define PT_PWT_MASK (1ULL << 3)
 | |
| #define PT_PCD_MASK (1ULL << 4)
 | |
| #define PT_ACCESSED_SHIFT 5
 | |
| #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 | |
| #define PT_DIRTY_SHIFT 6
 | |
| #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 | |
| #define PT_PAGE_SIZE_SHIFT 7
 | |
| #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 | |
| #define PT_PAT_MASK (1ULL << 7)
 | |
| #define PT_GLOBAL_MASK (1ULL << 8)
 | |
| #define PT64_NX_SHIFT 63
 | |
| #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 | |
| 
 | |
| #define PT_PAT_SHIFT 7
 | |
| #define PT_DIR_PAT_SHIFT 12
 | |
| #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 | |
| 
 | |
| #define PT32_DIR_PSE36_SIZE 4
 | |
| #define PT32_DIR_PSE36_SHIFT 13
 | |
| #define PT32_DIR_PSE36_MASK \
 | |
| 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 | |
| 
 | |
| #define PT64_ROOT_5LEVEL 5
 | |
| #define PT64_ROOT_4LEVEL 4
 | |
| #define PT32_ROOT_LEVEL 2
 | |
| #define PT32E_ROOT_LEVEL 3
 | |
| 
 | |
| #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
 | |
| 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
 | |
| 
 | |
| #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
 | |
| #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
 | |
| 
 | |
| static __always_inline u64 rsvd_bits(int s, int e)
 | |
| {
 | |
| 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
 | |
| 
 | |
| 	if (__builtin_constant_p(e))
 | |
| 		BUILD_BUG_ON(e > 63);
 | |
| 	else
 | |
| 		e &= 63;
 | |
| 
 | |
| 	if (e < s)
 | |
| 		return 0;
 | |
| 
 | |
| 	return ((2ULL << (e - s)) - 1) << s;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The number of non-reserved physical address bits irrespective of features
 | |
|  * that repurpose legal bits, e.g. MKTME.
 | |
|  */
 | |
| extern u8 __read_mostly shadow_phys_bits;
 | |
| 
 | |
| static inline gfn_t kvm_mmu_max_gfn(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Note that this uses the host MAXPHYADDR, not the guest's.
 | |
| 	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
 | |
| 	 * assuming KVM is running on bare metal, guest accesses beyond
 | |
| 	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
 | |
| 	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
 | |
| 	 * install a SPTE for such addresses.  If KVM is running as a VM
 | |
| 	 * itself, on the other hand, it might see a MAXPHYADDR that is less
 | |
| 	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
 | |
| 	 * disallows such SPTEs entirely and simplifies the TDP MMU.
 | |
| 	 */
 | |
| 	int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
 | |
| 
 | |
| 	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
 | |
| void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
 | |
| 
 | |
| void kvm_init_mmu(struct kvm_vcpu *vcpu);
 | |
| void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
 | |
| 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
 | |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 | |
| 			     int huge_page_level, bool accessed_dirty,
 | |
| 			     gpa_t new_eptp);
 | |
| bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 | |
| int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 | |
| 				u64 fault_address, char *insn, int insn_len);
 | |
| 
 | |
| int kvm_mmu_load(struct kvm_vcpu *vcpu);
 | |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 | |
| void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
 | |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
 | |
| void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kvm_mmu_load(vcpu);
 | |
| }
 | |
| 
 | |
| static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
 | |
| {
 | |
| 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
 | |
| 
 | |
| 	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
 | |
| 	       ? cr3 & X86_CR3_PCID_MASK
 | |
| 	       : 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
 | |
| }
 | |
| 
 | |
| static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 root_hpa = vcpu->arch.mmu->root.hpa;
 | |
| 
 | |
| 	if (!VALID_PAGE(root_hpa))
 | |
| 		return;
 | |
| 
 | |
| 	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
 | |
| 					  vcpu->arch.mmu->shadow_root_level);
 | |
| }
 | |
| 
 | |
| struct kvm_page_fault {
 | |
| 	/* arguments to kvm_mmu_do_page_fault.  */
 | |
| 	const gpa_t addr;
 | |
| 	const u32 error_code;
 | |
| 	const bool prefetch;
 | |
| 
 | |
| 	/* Derived from error_code.  */
 | |
| 	const bool exec;
 | |
| 	const bool write;
 | |
| 	const bool present;
 | |
| 	const bool rsvd;
 | |
| 	const bool user;
 | |
| 
 | |
| 	/* Derived from mmu and global state.  */
 | |
| 	const bool is_tdp;
 | |
| 	const bool nx_huge_page_workaround_enabled;
 | |
| 
 | |
| 	/*
 | |
| 	 * Whether a >4KB mapping can be created or is forbidden due to NX
 | |
| 	 * hugepages.
 | |
| 	 */
 | |
| 	bool huge_page_disallowed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Maximum page size that can be created for this fault; input to
 | |
| 	 * FNAME(fetch), __direct_map and kvm_tdp_mmu_map.
 | |
| 	 */
 | |
| 	u8 max_level;
 | |
| 
 | |
| 	/*
 | |
| 	 * Page size that can be created based on the max_level and the
 | |
| 	 * page size used by the host mapping.
 | |
| 	 */
 | |
| 	u8 req_level;
 | |
| 
 | |
| 	/*
 | |
| 	 * Page size that will be created based on the req_level and
 | |
| 	 * huge_page_disallowed.
 | |
| 	 */
 | |
| 	u8 goal_level;
 | |
| 
 | |
| 	/* Shifted addr, or result of guest page table walk if addr is a gva.  */
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	/* The memslot containing gfn. May be NULL. */
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	/* Outputs of kvm_faultin_pfn.  */
 | |
| 	kvm_pfn_t pfn;
 | |
| 	hva_t hva;
 | |
| 	bool map_writable;
 | |
| };
 | |
| 
 | |
| int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
 | |
| 
 | |
| extern int nx_huge_pages;
 | |
| static inline bool is_nx_huge_page_enabled(void)
 | |
| {
 | |
| 	return READ_ONCE(nx_huge_pages);
 | |
| }
 | |
| 
 | |
| static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 | |
| 					u32 err, bool prefetch)
 | |
| {
 | |
| 	struct kvm_page_fault fault = {
 | |
| 		.addr = cr2_or_gpa,
 | |
| 		.error_code = err,
 | |
| 		.exec = err & PFERR_FETCH_MASK,
 | |
| 		.write = err & PFERR_WRITE_MASK,
 | |
| 		.present = err & PFERR_PRESENT_MASK,
 | |
| 		.rsvd = err & PFERR_RSVD_MASK,
 | |
| 		.user = err & PFERR_USER_MASK,
 | |
| 		.prefetch = prefetch,
 | |
| 		.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
 | |
| 		.nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(),
 | |
| 
 | |
| 		.max_level = KVM_MAX_HUGEPAGE_LEVEL,
 | |
| 		.req_level = PG_LEVEL_4K,
 | |
| 		.goal_level = PG_LEVEL_4K,
 | |
| 	};
 | |
| #ifdef CONFIG_RETPOLINE
 | |
| 	if (fault.is_tdp)
 | |
| 		return kvm_tdp_page_fault(vcpu, &fault);
 | |
| #endif
 | |
| 	return vcpu->arch.mmu->page_fault(vcpu, &fault);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a given access (described through the I/D, W/R and U/S bits of a
 | |
|  * page fault error code pfec) causes a permission fault with the given PTE
 | |
|  * access rights (in ACC_* format).
 | |
|  *
 | |
|  * Return zero if the access does not fault; return the page fault error code
 | |
|  * if the access faults.
 | |
|  */
 | |
| static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 				  unsigned pte_access, unsigned pte_pkey,
 | |
| 				  u64 access)
 | |
| {
 | |
| 	/* strip nested paging fault error codes */
 | |
| 	unsigned int pfec = access;
 | |
| 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
 | |
| 	 * For implicit supervisor accesses, SMAP cannot be overridden.
 | |
| 	 *
 | |
| 	 * SMAP works on supervisor accesses only, and not_smap can
 | |
| 	 * be set or not set when user access with neither has any bearing
 | |
| 	 * on the result.
 | |
| 	 *
 | |
| 	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
 | |
| 	 * this bit will always be zero in pfec, but it will be one in index
 | |
| 	 * if SMAP checks are being disabled.
 | |
| 	 */
 | |
| 	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
 | |
| 	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
 | |
| 	int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
 | |
| 	bool fault = (mmu->permissions[index] >> pte_access) & 1;
 | |
| 	u32 errcode = PFERR_PRESENT_MASK;
 | |
| 
 | |
| 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
 | |
| 	if (unlikely(mmu->pkru_mask)) {
 | |
| 		u32 pkru_bits, offset;
 | |
| 
 | |
| 		/*
 | |
| 		* PKRU defines 32 bits, there are 16 domains and 2
 | |
| 		* attribute bits per domain in pkru.  pte_pkey is the
 | |
| 		* index of the protection domain, so pte_pkey * 2 is
 | |
| 		* is the index of the first bit for the domain.
 | |
| 		*/
 | |
| 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
 | |
| 
 | |
| 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
 | |
| 		offset = (pfec & ~1) +
 | |
| 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
 | |
| 
 | |
| 		pkru_bits &= mmu->pkru_mask >> offset;
 | |
| 		errcode |= -pkru_bits & PFERR_PK_MASK;
 | |
| 		fault |= (pkru_bits != 0);
 | |
| 	}
 | |
| 
 | |
| 	return -(u32)fault & errcode;
 | |
| }
 | |
| 
 | |
| void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
 | |
| 
 | |
| int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| int kvm_mmu_post_init_vm(struct kvm *kvm);
 | |
| void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
 | |
| 
 | |
| static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
 | |
| {
 | |
| 	/*
 | |
| 	 * Read shadow_root_allocated before related pointers. Hence, threads
 | |
| 	 * reading shadow_root_allocated in any lock context are guaranteed to
 | |
| 	 * see the pointers. Pairs with smp_store_release in
 | |
| 	 * mmu_first_shadow_root_alloc.
 | |
| 	 */
 | |
| 	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
 | |
| #else
 | |
| static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
 | |
| #endif
 | |
| 
 | |
| static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
 | |
| {
 | |
| 	return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
 | |
| }
 | |
| 
 | |
| static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
 | |
| {
 | |
| 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
 | |
| 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
 | |
| 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
 | |
| 		      int level)
 | |
| {
 | |
| 	return gfn_to_index(slot->base_gfn + npages - 1,
 | |
| 			    slot->base_gfn, level) + 1;
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
 | |
| {
 | |
| 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
 | |
| }
 | |
| 
 | |
| static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
 | |
| {
 | |
| 	atomic64_add(count, &kvm->stat.pages[level - 1]);
 | |
| }
 | |
| 
 | |
| gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
 | |
| 			   struct x86_exception *exception);
 | |
| 
 | |
| static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
 | |
| 				      struct kvm_mmu *mmu,
 | |
| 				      gpa_t gpa, u64 access,
 | |
| 				      struct x86_exception *exception)
 | |
| {
 | |
| 	if (mmu != &vcpu->arch.nested_mmu)
 | |
| 		return gpa;
 | |
| 	return translate_nested_gpa(vcpu, gpa, access, exception);
 | |
| }
 | |
| #endif
 |