390 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			390 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _ASM_X86_MSR_H
 | |
| #define _ASM_X86_MSR_H
 | |
| 
 | |
| #include "msr-index.h"
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #include <asm/asm.h>
 | |
| #include <asm/errno.h>
 | |
| #include <asm/cpumask.h>
 | |
| #include <uapi/asm/msr.h>
 | |
| #include <asm/shared/msr.h>
 | |
| 
 | |
| struct msr_info {
 | |
| 	u32 msr_no;
 | |
| 	struct msr reg;
 | |
| 	struct msr *msrs;
 | |
| 	int err;
 | |
| };
 | |
| 
 | |
| struct msr_regs_info {
 | |
| 	u32 *regs;
 | |
| 	int err;
 | |
| };
 | |
| 
 | |
| struct saved_msr {
 | |
| 	bool valid;
 | |
| 	struct msr_info info;
 | |
| };
 | |
| 
 | |
| struct saved_msrs {
 | |
| 	unsigned int num;
 | |
| 	struct saved_msr *array;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A"
 | |
|  * constraint has different meanings. For i386, "A" means exactly
 | |
|  * edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead,
 | |
|  * it means rax *or* rdx.
 | |
|  */
 | |
| #ifdef CONFIG_X86_64
 | |
| /* Using 64-bit values saves one instruction clearing the high half of low */
 | |
| #define DECLARE_ARGS(val, low, high)	unsigned long low, high
 | |
| #define EAX_EDX_VAL(val, low, high)	((low) | (high) << 32)
 | |
| #define EAX_EDX_RET(val, low, high)	"=a" (low), "=d" (high)
 | |
| #else
 | |
| #define DECLARE_ARGS(val, low, high)	unsigned long long val
 | |
| #define EAX_EDX_VAL(val, low, high)	(val)
 | |
| #define EAX_EDX_RET(val, low, high)	"=A" (val)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_TRACEPOINTS
 | |
| /*
 | |
|  * Be very careful with includes. This header is prone to include loops.
 | |
|  */
 | |
| #include <asm/atomic.h>
 | |
| #include <linux/tracepoint-defs.h>
 | |
| 
 | |
| extern struct tracepoint __tracepoint_read_msr;
 | |
| extern struct tracepoint __tracepoint_write_msr;
 | |
| extern struct tracepoint __tracepoint_rdpmc;
 | |
| #define msr_tracepoint_active(t) static_key_false(&(t).key)
 | |
| extern void do_trace_write_msr(unsigned int msr, u64 val, int failed);
 | |
| extern void do_trace_read_msr(unsigned int msr, u64 val, int failed);
 | |
| extern void do_trace_rdpmc(unsigned int msr, u64 val, int failed);
 | |
| #else
 | |
| #define msr_tracepoint_active(t) false
 | |
| static inline void do_trace_write_msr(unsigned int msr, u64 val, int failed) {}
 | |
| static inline void do_trace_read_msr(unsigned int msr, u64 val, int failed) {}
 | |
| static inline void do_trace_rdpmc(unsigned int msr, u64 val, int failed) {}
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * __rdmsr() and __wrmsr() are the two primitives which are the bare minimum MSR
 | |
|  * accessors and should not have any tracing or other functionality piggybacking
 | |
|  * on them - those are *purely* for accessing MSRs and nothing more. So don't even
 | |
|  * think of extending them - you will be slapped with a stinking trout or a frozen
 | |
|  * shark will reach you, wherever you are! You've been warned.
 | |
|  */
 | |
| static inline unsigned long long notrace __rdmsr(unsigned int msr)
 | |
| {
 | |
| 	DECLARE_ARGS(val, low, high);
 | |
| 
 | |
| 	asm volatile("1: rdmsr\n"
 | |
| 		     "2:\n"
 | |
| 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_unsafe)
 | |
| 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
 | |
| 
 | |
| 	return EAX_EDX_VAL(val, low, high);
 | |
| }
 | |
| 
 | |
| static inline void notrace __wrmsr(unsigned int msr, u32 low, u32 high)
 | |
| {
 | |
| 	asm volatile("1: wrmsr\n"
 | |
| 		     "2:\n"
 | |
| 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_unsafe)
 | |
| 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
 | |
| }
 | |
| 
 | |
| #define native_rdmsr(msr, val1, val2)			\
 | |
| do {							\
 | |
| 	u64 __val = __rdmsr((msr));			\
 | |
| 	(void)((val1) = (u32)__val);			\
 | |
| 	(void)((val2) = (u32)(__val >> 32));		\
 | |
| } while (0)
 | |
| 
 | |
| #define native_wrmsr(msr, low, high)			\
 | |
| 	__wrmsr(msr, low, high)
 | |
| 
 | |
| #define native_wrmsrl(msr, val)				\
 | |
| 	__wrmsr((msr), (u32)((u64)(val)),		\
 | |
| 		       (u32)((u64)(val) >> 32))
 | |
| 
 | |
| static inline unsigned long long native_read_msr(unsigned int msr)
 | |
| {
 | |
| 	unsigned long long val;
 | |
| 
 | |
| 	val = __rdmsr(msr);
 | |
| 
 | |
| 	if (msr_tracepoint_active(__tracepoint_read_msr))
 | |
| 		do_trace_read_msr(msr, val, 0);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static inline unsigned long long native_read_msr_safe(unsigned int msr,
 | |
| 						      int *err)
 | |
| {
 | |
| 	DECLARE_ARGS(val, low, high);
 | |
| 
 | |
| 	asm volatile("2: rdmsr ; xor %[err],%[err]\n"
 | |
| 		     "1:\n\t"
 | |
| 		     ".section .fixup,\"ax\"\n\t"
 | |
| 		     "3: mov %[fault],%[err]\n\t"
 | |
| 		     "xorl %%eax, %%eax\n\t"
 | |
| 		     "xorl %%edx, %%edx\n\t"
 | |
| 		     "jmp 1b\n\t"
 | |
| 		     ".previous\n\t"
 | |
| 		     _ASM_EXTABLE(2b, 3b)
 | |
| 		     : [err] "=r" (*err), EAX_EDX_RET(val, low, high)
 | |
| 		     : "c" (msr), [fault] "i" (-EIO));
 | |
| 	if (msr_tracepoint_active(__tracepoint_read_msr))
 | |
| 		do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), *err);
 | |
| 	return EAX_EDX_VAL(val, low, high);
 | |
| }
 | |
| 
 | |
| /* Can be uninlined because referenced by paravirt */
 | |
| static inline void notrace
 | |
| native_write_msr(unsigned int msr, u32 low, u32 high)
 | |
| {
 | |
| 	__wrmsr(msr, low, high);
 | |
| 
 | |
| 	if (msr_tracepoint_active(__tracepoint_write_msr))
 | |
| 		do_trace_write_msr(msr, ((u64)high << 32 | low), 0);
 | |
| }
 | |
| 
 | |
| /* Can be uninlined because referenced by paravirt */
 | |
| static inline int notrace
 | |
| native_write_msr_safe(unsigned int msr, u32 low, u32 high)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	asm volatile("2: wrmsr ; xor %[err],%[err]\n"
 | |
| 		     "1:\n\t"
 | |
| 		     ".section .fixup,\"ax\"\n\t"
 | |
| 		     "3:  mov %[fault],%[err] ; jmp 1b\n\t"
 | |
| 		     ".previous\n\t"
 | |
| 		     _ASM_EXTABLE(2b, 3b)
 | |
| 		     : [err] "=a" (err)
 | |
| 		     : "c" (msr), "0" (low), "d" (high),
 | |
| 		       [fault] "i" (-EIO)
 | |
| 		     : "memory");
 | |
| 	if (msr_tracepoint_active(__tracepoint_write_msr))
 | |
| 		do_trace_write_msr(msr, ((u64)high << 32 | low), err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| extern int rdmsr_safe_regs(u32 regs[8]);
 | |
| extern int wrmsr_safe_regs(u32 regs[8]);
 | |
| 
 | |
| /**
 | |
|  * rdtsc() - returns the current TSC without ordering constraints
 | |
|  *
 | |
|  * rdtsc() returns the result of RDTSC as a 64-bit integer.  The
 | |
|  * only ordering constraint it supplies is the ordering implied by
 | |
|  * "asm volatile": it will put the RDTSC in the place you expect.  The
 | |
|  * CPU can and will speculatively execute that RDTSC, though, so the
 | |
|  * results can be non-monotonic if compared on different CPUs.
 | |
|  */
 | |
| static __always_inline unsigned long long rdtsc(void)
 | |
| {
 | |
| 	DECLARE_ARGS(val, low, high);
 | |
| 
 | |
| 	asm volatile("rdtsc" : EAX_EDX_RET(val, low, high));
 | |
| 
 | |
| 	return EAX_EDX_VAL(val, low, high);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rdtsc_ordered() - read the current TSC in program order
 | |
|  *
 | |
|  * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer.
 | |
|  * It is ordered like a load to a global in-memory counter.  It should
 | |
|  * be impossible to observe non-monotonic rdtsc_unordered() behavior
 | |
|  * across multiple CPUs as long as the TSC is synced.
 | |
|  */
 | |
| static __always_inline unsigned long long rdtsc_ordered(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * The RDTSC instruction is not ordered relative to memory
 | |
| 	 * access.  The Intel SDM and the AMD APM are both vague on this
 | |
| 	 * point, but empirically an RDTSC instruction can be
 | |
| 	 * speculatively executed before prior loads.  An RDTSC
 | |
| 	 * immediately after an appropriate barrier appears to be
 | |
| 	 * ordered as a normal load, that is, it provides the same
 | |
| 	 * ordering guarantees as reading from a global memory location
 | |
| 	 * that some other imaginary CPU is updating continuously with a
 | |
| 	 * time stamp.
 | |
| 	 */
 | |
| 	barrier_nospec();
 | |
| 	return rdtsc();
 | |
| }
 | |
| 
 | |
| static inline unsigned long long native_read_pmc(int counter)
 | |
| {
 | |
| 	DECLARE_ARGS(val, low, high);
 | |
| 
 | |
| 	asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter));
 | |
| 	if (msr_tracepoint_active(__tracepoint_rdpmc))
 | |
| 		do_trace_rdpmc(counter, EAX_EDX_VAL(val, low, high), 0);
 | |
| 	return EAX_EDX_VAL(val, low, high);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| #include <asm/paravirt.h>
 | |
| #else
 | |
| #include <linux/errno.h>
 | |
| /*
 | |
|  * Access to machine-specific registers (available on 586 and better only)
 | |
|  * Note: the rd* operations modify the parameters directly (without using
 | |
|  * pointer indirection), this allows gcc to optimize better
 | |
|  */
 | |
| 
 | |
| #define rdmsr(msr, low, high)					\
 | |
| do {								\
 | |
| 	u64 __val = native_read_msr((msr));			\
 | |
| 	(void)((low) = (u32)__val);				\
 | |
| 	(void)((high) = (u32)(__val >> 32));			\
 | |
| } while (0)
 | |
| 
 | |
| static inline void wrmsr(unsigned int msr, u32 low, u32 high)
 | |
| {
 | |
| 	native_write_msr(msr, low, high);
 | |
| }
 | |
| 
 | |
| #define rdmsrl(msr, val)			\
 | |
| 	((val) = native_read_msr((msr)))
 | |
| 
 | |
| static inline void wrmsrl(unsigned int msr, u64 val)
 | |
| {
 | |
| 	native_write_msr(msr, (u32)(val & 0xffffffffULL), (u32)(val >> 32));
 | |
| }
 | |
| 
 | |
| /* wrmsr with exception handling */
 | |
| static inline int wrmsr_safe(unsigned int msr, u32 low, u32 high)
 | |
| {
 | |
| 	return native_write_msr_safe(msr, low, high);
 | |
| }
 | |
| 
 | |
| /* rdmsr with exception handling */
 | |
| #define rdmsr_safe(msr, low, high)				\
 | |
| ({								\
 | |
| 	int __err;						\
 | |
| 	u64 __val = native_read_msr_safe((msr), &__err);	\
 | |
| 	(*low) = (u32)__val;					\
 | |
| 	(*high) = (u32)(__val >> 32);				\
 | |
| 	__err;							\
 | |
| })
 | |
| 
 | |
| static inline int rdmsrl_safe(unsigned int msr, unsigned long long *p)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	*p = native_read_msr_safe(msr, &err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #define rdpmc(counter, low, high)			\
 | |
| do {							\
 | |
| 	u64 _l = native_read_pmc((counter));		\
 | |
| 	(low)  = (u32)_l;				\
 | |
| 	(high) = (u32)(_l >> 32);			\
 | |
| } while (0)
 | |
| 
 | |
| #define rdpmcl(counter, val) ((val) = native_read_pmc(counter))
 | |
| 
 | |
| #endif	/* !CONFIG_PARAVIRT */
 | |
| 
 | |
| /*
 | |
|  * 64-bit version of wrmsr_safe():
 | |
|  */
 | |
| static inline int wrmsrl_safe(u32 msr, u64 val)
 | |
| {
 | |
| 	return wrmsr_safe(msr, (u32)val,  (u32)(val >> 32));
 | |
| }
 | |
| 
 | |
| #define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high))
 | |
| 
 | |
| #define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0)
 | |
| 
 | |
| struct msr *msrs_alloc(void);
 | |
| void msrs_free(struct msr *msrs);
 | |
| int msr_set_bit(u32 msr, u8 bit);
 | |
| int msr_clear_bit(u32 msr, u8 bit);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
 | |
| int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
 | |
| int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
 | |
| int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
 | |
| void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
 | |
| void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
 | |
| int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
 | |
| int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
 | |
| int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
 | |
| int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
 | |
| int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
 | |
| int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
 | |
| #else  /*  CONFIG_SMP  */
 | |
| static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
 | |
| {
 | |
| 	rdmsr(msr_no, *l, *h);
 | |
| 	return 0;
 | |
| }
 | |
| static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
 | |
| {
 | |
| 	wrmsr(msr_no, l, h);
 | |
| 	return 0;
 | |
| }
 | |
| static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
 | |
| {
 | |
| 	rdmsrl(msr_no, *q);
 | |
| 	return 0;
 | |
| }
 | |
| static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
 | |
| {
 | |
| 	wrmsrl(msr_no, q);
 | |
| 	return 0;
 | |
| }
 | |
| static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no,
 | |
| 				struct msr *msrs)
 | |
| {
 | |
| 	rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
 | |
| }
 | |
| static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no,
 | |
| 				struct msr *msrs)
 | |
| {
 | |
| 	wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
 | |
| }
 | |
| static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
 | |
| 				    u32 *l, u32 *h)
 | |
| {
 | |
| 	return rdmsr_safe(msr_no, l, h);
 | |
| }
 | |
| static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
 | |
| {
 | |
| 	return wrmsr_safe(msr_no, l, h);
 | |
| }
 | |
| static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
 | |
| {
 | |
| 	return rdmsrl_safe(msr_no, q);
 | |
| }
 | |
| static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
 | |
| {
 | |
| 	return wrmsrl_safe(msr_no, q);
 | |
| }
 | |
| static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
 | |
| {
 | |
| 	return rdmsr_safe_regs(regs);
 | |
| }
 | |
| static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
 | |
| {
 | |
| 	return wrmsr_safe_regs(regs);
 | |
| }
 | |
| #endif  /* CONFIG_SMP */
 | |
| #endif /* __ASSEMBLY__ */
 | |
| #endif /* _ASM_X86_MSR_H */
 |