354 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _ASM_X86_MMU_CONTEXT_H
 | |
| #define _ASM_X86_MMU_CONTEXT_H
 | |
| 
 | |
| #include <asm/desc.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/pkeys.h>
 | |
| 
 | |
| #include <trace/events/tlb.h>
 | |
| 
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/mpx.h>
 | |
| 
 | |
| extern atomic64_t last_mm_ctx_id;
 | |
| 
 | |
| #ifndef CONFIG_PARAVIRT
 | |
| static inline void paravirt_activate_mm(struct mm_struct *prev,
 | |
| 					struct mm_struct *next)
 | |
| {
 | |
| }
 | |
| #endif	/* !CONFIG_PARAVIRT */
 | |
| 
 | |
| #ifdef CONFIG_PERF_EVENTS
 | |
| 
 | |
| extern void perf_clear_dirty_counters(void);
 | |
| 
 | |
| DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key);
 | |
| DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
 | |
| 
 | |
| static inline void load_mm_cr4(struct mm_struct *mm)
 | |
| {
 | |
| 	if (static_branch_unlikely(&rdpmc_always_available_key) ||
 | |
| 	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
 | |
| 	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
 | |
| 		/*
 | |
| 		 * Clear the existing dirty counters to
 | |
| 		 * prevent the leak for an RDPMC task.
 | |
| 		 */
 | |
| 		perf_clear_dirty_counters();
 | |
| 		cr4_set_bits(X86_CR4_PCE);
 | |
| 	} else
 | |
| 		cr4_clear_bits(X86_CR4_PCE);
 | |
| }
 | |
| #else
 | |
| static inline void load_mm_cr4(struct mm_struct *mm) {}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MODIFY_LDT_SYSCALL
 | |
| /*
 | |
|  * ldt_structs can be allocated, used, and freed, but they are never
 | |
|  * modified while live.
 | |
|  */
 | |
| struct ldt_struct {
 | |
| 	/*
 | |
| 	 * Xen requires page-aligned LDTs with special permissions.  This is
 | |
| 	 * needed to prevent us from installing evil descriptors such as
 | |
| 	 * call gates.  On native, we could merge the ldt_struct and LDT
 | |
| 	 * allocations, but it's not worth trying to optimize.
 | |
| 	 */
 | |
| 	struct desc_struct	*entries;
 | |
| 	unsigned int		nr_entries;
 | |
| 
 | |
| 	/*
 | |
| 	 * If PTI is in use, then the entries array is not mapped while we're
 | |
| 	 * in user mode.  The whole array will be aliased at the addressed
 | |
| 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
 | |
| 	 * and map, and enable a new LDT without invalidating the mapping
 | |
| 	 * of an older, still-in-use LDT.
 | |
| 	 *
 | |
| 	 * slot will be -1 if this LDT doesn't have an alias mapping.
 | |
| 	 */
 | |
| 	int			slot;
 | |
| };
 | |
| 
 | |
| /* This is a multiple of PAGE_SIZE. */
 | |
| #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
 | |
| 
 | |
| static inline void *ldt_slot_va(int slot)
 | |
| {
 | |
| 	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used for LDT copy/destruction.
 | |
|  */
 | |
| static inline void init_new_context_ldt(struct mm_struct *mm)
 | |
| {
 | |
| 	mm->context.ldt = NULL;
 | |
| 	init_rwsem(&mm->context.ldt_usr_sem);
 | |
| }
 | |
| int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
 | |
| void destroy_context_ldt(struct mm_struct *mm);
 | |
| void ldt_arch_exit_mmap(struct mm_struct *mm);
 | |
| #else	/* CONFIG_MODIFY_LDT_SYSCALL */
 | |
| static inline void init_new_context_ldt(struct mm_struct *mm) { }
 | |
| static inline int ldt_dup_context(struct mm_struct *oldmm,
 | |
| 				  struct mm_struct *mm)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void destroy_context_ldt(struct mm_struct *mm) { }
 | |
| static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
 | |
| #endif
 | |
| 
 | |
| static inline void load_mm_ldt(struct mm_struct *mm)
 | |
| {
 | |
| #ifdef CONFIG_MODIFY_LDT_SYSCALL
 | |
| 	struct ldt_struct *ldt;
 | |
| 
 | |
| 	/* READ_ONCE synchronizes with smp_store_release */
 | |
| 	ldt = READ_ONCE(mm->context.ldt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Any change to mm->context.ldt is followed by an IPI to all
 | |
| 	 * CPUs with the mm active.  The LDT will not be freed until
 | |
| 	 * after the IPI is handled by all such CPUs.  This means that,
 | |
| 	 * if the ldt_struct changes before we return, the values we see
 | |
| 	 * will be safe, and the new values will be loaded before we run
 | |
| 	 * any user code.
 | |
| 	 *
 | |
| 	 * NB: don't try to convert this to use RCU without extreme care.
 | |
| 	 * We would still need IRQs off, because we don't want to change
 | |
| 	 * the local LDT after an IPI loaded a newer value than the one
 | |
| 	 * that we can see.
 | |
| 	 */
 | |
| 
 | |
| 	if (unlikely(ldt)) {
 | |
| 		if (static_cpu_has(X86_FEATURE_PTI)) {
 | |
| 			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
 | |
| 				/*
 | |
| 				 * Whoops -- either the new LDT isn't mapped
 | |
| 				 * (if slot == -1) or is mapped into a bogus
 | |
| 				 * slot (if slot > 1).
 | |
| 				 */
 | |
| 				clear_LDT();
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If page table isolation is enabled, ldt->entries
 | |
| 			 * will not be mapped in the userspace pagetables.
 | |
| 			 * Tell the CPU to access the LDT through the alias
 | |
| 			 * at ldt_slot_va(ldt->slot).
 | |
| 			 */
 | |
| 			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
 | |
| 		} else {
 | |
| 			set_ldt(ldt->entries, ldt->nr_entries);
 | |
| 		}
 | |
| 	} else {
 | |
| 		clear_LDT();
 | |
| 	}
 | |
| #else
 | |
| 	clear_LDT();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
 | |
| {
 | |
| #ifdef CONFIG_MODIFY_LDT_SYSCALL
 | |
| 	/*
 | |
| 	 * Load the LDT if either the old or new mm had an LDT.
 | |
| 	 *
 | |
| 	 * An mm will never go from having an LDT to not having an LDT.  Two
 | |
| 	 * mms never share an LDT, so we don't gain anything by checking to
 | |
| 	 * see whether the LDT changed.  There's also no guarantee that
 | |
| 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
 | |
| 	 * then prev->context.ldt will also be non-NULL.
 | |
| 	 *
 | |
| 	 * If we really cared, we could optimize the case where prev == next
 | |
| 	 * and we're exiting lazy mode.  Most of the time, if this happens,
 | |
| 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
 | |
| 	 * used by legacy code and emulators where we don't need this level of
 | |
| 	 * performance.
 | |
| 	 *
 | |
| 	 * This uses | instead of || because it generates better code.
 | |
| 	 */
 | |
| 	if (unlikely((unsigned long)prev->context.ldt |
 | |
| 		     (unsigned long)next->context.ldt))
 | |
| 		load_mm_ldt(next);
 | |
| #endif
 | |
| 
 | |
| 	DEBUG_LOCKS_WARN_ON(preemptible());
 | |
| }
 | |
| 
 | |
| void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
 | |
| 
 | |
| /*
 | |
|  * Init a new mm.  Used on mm copies, like at fork()
 | |
|  * and on mm's that are brand-new, like at execve().
 | |
|  */
 | |
| static inline int init_new_context(struct task_struct *tsk,
 | |
| 				   struct mm_struct *mm)
 | |
| {
 | |
| 	mutex_init(&mm->context.lock);
 | |
| 
 | |
| 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
 | |
| 	atomic64_set(&mm->context.tlb_gen, 0);
 | |
| 
 | |
| #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 | |
| 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
 | |
| 		/* pkey 0 is the default and allocated implicitly */
 | |
| 		mm->context.pkey_allocation_map = 0x1;
 | |
| 		/* -1 means unallocated or invalid */
 | |
| 		mm->context.execute_only_pkey = -1;
 | |
| 	}
 | |
| #endif
 | |
| 	init_new_context_ldt(mm);
 | |
| 	return 0;
 | |
| }
 | |
| static inline void destroy_context(struct mm_struct *mm)
 | |
| {
 | |
| 	destroy_context_ldt(mm);
 | |
| }
 | |
| 
 | |
| extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 | |
| 		      struct task_struct *tsk);
 | |
| 
 | |
| extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 | |
| 			       struct task_struct *tsk);
 | |
| #define switch_mm_irqs_off switch_mm_irqs_off
 | |
| 
 | |
| #define activate_mm(prev, next)			\
 | |
| do {						\
 | |
| 	paravirt_activate_mm((prev), (next));	\
 | |
| 	switch_mm((prev), (next), NULL);	\
 | |
| } while (0);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| #define deactivate_mm(tsk, mm)			\
 | |
| do {						\
 | |
| 	lazy_load_gs(0);			\
 | |
| } while (0)
 | |
| #else
 | |
| #define deactivate_mm(tsk, mm)			\
 | |
| do {						\
 | |
| 	load_gs_index(0);			\
 | |
| 	loadsegment(fs, 0);			\
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| static inline void arch_dup_pkeys(struct mm_struct *oldmm,
 | |
| 				  struct mm_struct *mm)
 | |
| {
 | |
| #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 | |
| 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 | |
| 		return;
 | |
| 
 | |
| 	/* Duplicate the oldmm pkey state in mm: */
 | |
| 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
 | |
| 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 | |
| {
 | |
| 	arch_dup_pkeys(oldmm, mm);
 | |
| 	paravirt_arch_dup_mmap(oldmm, mm);
 | |
| 	return ldt_dup_context(oldmm, mm);
 | |
| }
 | |
| 
 | |
| static inline void arch_exit_mmap(struct mm_struct *mm)
 | |
| {
 | |
| 	paravirt_arch_exit_mmap(mm);
 | |
| 	ldt_arch_exit_mmap(mm);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static inline bool is_64bit_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
 | |
| 		!(mm->context.ia32_compat == TIF_IA32);
 | |
| }
 | |
| #else
 | |
| static inline bool is_64bit_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void arch_bprm_mm_init(struct mm_struct *mm,
 | |
| 		struct vm_area_struct *vma)
 | |
| {
 | |
| 	mpx_mm_init(mm);
 | |
| }
 | |
| 
 | |
| static inline void arch_unmap(struct mm_struct *mm, unsigned long start,
 | |
| 			      unsigned long end)
 | |
| {
 | |
| 	/*
 | |
| 	 * mpx_notify_unmap() goes and reads a rarely-hot
 | |
| 	 * cacheline in the mm_struct.  That can be expensive
 | |
| 	 * enough to be seen in profiles.
 | |
| 	 *
 | |
| 	 * The mpx_notify_unmap() call and its contents have been
 | |
| 	 * observed to affect munmap() performance on hardware
 | |
| 	 * where MPX is not present.
 | |
| 	 *
 | |
| 	 * The unlikely() optimizes for the fast case: no MPX
 | |
| 	 * in the CPU, or no MPX use in the process.  Even if
 | |
| 	 * we get this wrong (in the unlikely event that MPX
 | |
| 	 * is widely enabled on some system) the overhead of
 | |
| 	 * MPX itself (reading bounds tables) is expected to
 | |
| 	 * overwhelm the overhead of getting this unlikely()
 | |
| 	 * consistently wrong.
 | |
| 	 */
 | |
| 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
 | |
| 		mpx_notify_unmap(mm, start, end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We only want to enforce protection keys on the current process
 | |
|  * because we effectively have no access to PKRU for other
 | |
|  * processes or any way to tell *which * PKRU in a threaded
 | |
|  * process we could use.
 | |
|  *
 | |
|  * So do not enforce things if the VMA is not from the current
 | |
|  * mm, or if we are in a kernel thread.
 | |
|  */
 | |
| static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
 | |
| 		bool write, bool execute, bool foreign)
 | |
| {
 | |
| 	/* pkeys never affect instruction fetches */
 | |
| 	if (execute)
 | |
| 		return true;
 | |
| 	/* allow access if the VMA is not one from this process */
 | |
| 	if (foreign || vma_is_foreign(vma))
 | |
| 		return true;
 | |
| 	return __pkru_allows_pkey(vma_pkey(vma), write);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This can be used from process context to figure out what the value of
 | |
|  * CR3 is without needing to do a (slow) __read_cr3().
 | |
|  *
 | |
|  * It's intended to be used for code like KVM that sneakily changes CR3
 | |
|  * and needs to restore it.  It needs to be used very carefully.
 | |
|  */
 | |
| static inline unsigned long __get_current_cr3_fast(void)
 | |
| {
 | |
| 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
 | |
| 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
 | |
| 
 | |
| 	/* For now, be very restrictive about when this can be called. */
 | |
| 	VM_WARN_ON(in_nmi() || preemptible());
 | |
| 
 | |
| 	VM_BUG_ON(cr3 != __read_cr3());
 | |
| 	return cr3;
 | |
| }
 | |
| 
 | |
| #endif /* _ASM_X86_MMU_CONTEXT_H */
 |