6633 lines
		
	
	
		
			188 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6633 lines
		
	
	
		
			188 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Per core/cpu state
 | |
|  *
 | |
|  * Used to coordinate shared registers between HT threads or
 | |
|  * among events on a single PMU.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/nmi.h>
 | |
| 
 | |
| #include <asm/cpufeature.h>
 | |
| #include <asm/hardirq.h>
 | |
| #include <asm/intel-family.h>
 | |
| #include <asm/intel_pt.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/cpu_device_id.h>
 | |
| 
 | |
| #include "../perf_event.h"
 | |
| 
 | |
| /*
 | |
|  * Intel PerfMon, used on Core and later.
 | |
|  */
 | |
| static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
 | |
| {
 | |
| 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
 | |
| 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
 | |
| 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
 | |
| 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
 | |
| 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
 | |
| 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
 | |
| 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
 | |
| 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_core_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_core2_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
 | |
| {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_snb_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 | |
| 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 | |
| 
 | |
| 	/*
 | |
| 	 * When HT is off these events can only run on the bottom 4 counters
 | |
| 	 * When HT is on, they are impacted by the HT bug and require EXCL access
 | |
| 	 */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 | |
| 
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 | |
| 
 | |
| 	/*
 | |
| 	 * When HT is off these events can only run on the bottom 4 counters
 | |
| 	 * When HT is on, they are impacted by the HT bug and require EXCL access
 | |
| 	 */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 | |
| 
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
 | |
| {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_v1_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_gen_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_slm_event_constraints[] __read_mostly =
 | |
| {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_skl_event_constraints[] = {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
 | |
| 
 | |
| 	/*
 | |
| 	 * when HT is off, these can only run on the bottom 4 counters
 | |
| 	 */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
 | |
| 
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 | |
| 	/*
 | |
| 	 * Note the low 8 bits eventsel code is not a continuous field, containing
 | |
| 	 * some #GPing bits. These are masked out.
 | |
| 	 */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_icl_event_constraints[] = {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
 | |
| 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_spr_event_constraints[] = {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* INST_RETIRED.PREC_DIST */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
 | |
| 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
 | |
| 
 | |
| 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
 | |
| 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
 | |
| 	/*
 | |
| 	 * Generally event codes < 0x90 are restricted to counters 0-3.
 | |
| 	 * The 0x2E and 0x3C are exception, which has no restriction.
 | |
| 	 */
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
 | |
| 
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
 | |
| 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
 | |
| 	/*
 | |
| 	 * Generally event codes >= 0x90 are likely to have no restrictions.
 | |
| 	 * The exception are defined as above.
 | |
| 	 */
 | |
| 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
 | |
| 
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| 
 | |
| EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
 | |
| EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
 | |
| EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
 | |
| 
 | |
| static struct attribute *nhm_mem_events_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_nhm),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * topdown events for Intel Core CPUs.
 | |
|  *
 | |
|  * The events are all in slots, which is a free slot in a 4 wide
 | |
|  * pipeline. Some events are already reported in slots, for cycle
 | |
|  * events we multiply by the pipeline width (4).
 | |
|  *
 | |
|  * With Hyper Threading on, topdown metrics are either summed or averaged
 | |
|  * between the threads of a core: (count_t0 + count_t1).
 | |
|  *
 | |
|  * For the average case the metric is always scaled to pipeline width,
 | |
|  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
 | |
|  */
 | |
| 
 | |
| EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
 | |
| 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
 | |
| 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
 | |
| EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
 | |
| EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
 | |
| 	"event=0xe,umask=0x1");			/* uops_issued.any */
 | |
| EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
 | |
| 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
 | |
| EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
 | |
| 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
 | |
| EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
 | |
| 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
 | |
| 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
 | |
| EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
 | |
| 	"4", "2");
 | |
| 
 | |
| EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
 | |
| EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
 | |
| EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
 | |
| EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
 | |
| EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
 | |
| EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
 | |
| EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
 | |
| EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
 | |
| EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
 | |
| 
 | |
| static struct attribute *snb_events_attrs[] = {
 | |
| 	EVENT_PTR(td_slots_issued),
 | |
| 	EVENT_PTR(td_slots_retired),
 | |
| 	EVENT_PTR(td_fetch_bubbles),
 | |
| 	EVENT_PTR(td_total_slots),
 | |
| 	EVENT_PTR(td_total_slots_scale),
 | |
| 	EVENT_PTR(td_recovery_bubbles),
 | |
| 	EVENT_PTR(td_recovery_bubbles_scale),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *snb_mem_events_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_snb),
 | |
| 	EVENT_PTR(mem_st_snb),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_hsw_event_constraints[] = {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 | |
| 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
 | |
| 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
 | |
| 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
 | |
| 
 | |
| 	/*
 | |
| 	 * When HT is off these events can only run on the bottom 4 counters
 | |
| 	 * When HT is on, they are impacted by the HT bug and require EXCL access
 | |
| 	 */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 | |
| 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 | |
| 
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static struct event_constraint intel_bdw_event_constraints[] = {
 | |
| 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
 | |
| 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
 | |
| 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
 | |
| 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
 | |
| 	/*
 | |
| 	 * when HT is off, these can only run on the bottom 4 counters
 | |
| 	 */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
 | |
| 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
 | |
| 	EVENT_CONSTRAINT_END
 | |
| };
 | |
| 
 | |
| static u64 intel_pmu_event_map(int hw_event)
 | |
| {
 | |
| 	return intel_perfmon_event_map[hw_event];
 | |
| }
 | |
| 
 | |
| static __initconst const u64 spr_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x81d0,
 | |
| 		[ C(RESULT_MISS)   ] = 0xe124,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x82d0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_MISS)   ] = 0xe424,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x12a,
 | |
| 		[ C(RESULT_MISS)   ] = 0x12a,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x12a,
 | |
| 		[ C(RESULT_MISS)   ] = 0x12a,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x81d0,
 | |
| 		[ C(RESULT_MISS)   ] = 0xe12,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x82d0,
 | |
| 		[ C(RESULT_MISS)   ] = 0xe13,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = 0xe11,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x4c4,
 | |
| 		[ C(RESULT_MISS)   ] = 0x4c5,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x12a,
 | |
| 		[ C(RESULT_MISS)   ] = 0x12a,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 spr_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x10001,
 | |
| 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
 | |
| 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x10c000001,
 | |
| 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Notes on the events:
 | |
|  * - data reads do not include code reads (comparable to earlier tables)
 | |
|  * - data counts include speculative execution (except L1 write, dtlb, bpu)
 | |
|  * - remote node access includes remote memory, remote cache, remote mmio.
 | |
|  * - prefetches are not included in the counts.
 | |
|  * - icache miss does not include decoded icache
 | |
|  */
 | |
| 
 | |
| #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
 | |
| #define SKL_DEMAND_RFO			BIT_ULL(1)
 | |
| #define SKL_ANY_RESPONSE		BIT_ULL(16)
 | |
| #define SKL_SUPPLIER_NONE		BIT_ULL(17)
 | |
| #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
 | |
| #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
 | |
| #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
 | |
| #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
 | |
| #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
 | |
| 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 | |
| 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 | |
| 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 | |
| #define SKL_SPL_HIT			BIT_ULL(30)
 | |
| #define SKL_SNOOP_NONE			BIT_ULL(31)
 | |
| #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
 | |
| #define SKL_SNOOP_MISS			BIT_ULL(33)
 | |
| #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
 | |
| #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
 | |
| #define SKL_SNOOP_HITM			BIT_ULL(36)
 | |
| #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
 | |
| #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
 | |
| 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 | |
| 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 | |
| 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
 | |
| #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
 | |
| #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
 | |
| 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 | |
| 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 | |
| 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
 | |
| #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
 | |
| #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
 | |
| #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 | |
| 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 | |
| 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 | |
| 
 | |
| static __initconst const u64 skl_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
 | |
| 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
 | |
| 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
 | |
| 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
 | |
| 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 skl_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 | |
| 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 | |
| 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 | |
| 				       SKL_L3_MISS|SKL_ANY_SNOOP|
 | |
| 				       SKL_SUPPLIER_NONE,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 | |
| 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 | |
| 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 | |
| 				       SKL_L3_MISS|SKL_ANY_SNOOP|
 | |
| 				       SKL_SUPPLIER_NONE,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 | |
| 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 | |
| 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 | |
| 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 | |
| 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 | |
| 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 | |
| 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| #define SNB_DMND_DATA_RD	(1ULL << 0)
 | |
| #define SNB_DMND_RFO		(1ULL << 1)
 | |
| #define SNB_DMND_IFETCH		(1ULL << 2)
 | |
| #define SNB_DMND_WB		(1ULL << 3)
 | |
| #define SNB_PF_DATA_RD		(1ULL << 4)
 | |
| #define SNB_PF_RFO		(1ULL << 5)
 | |
| #define SNB_PF_IFETCH		(1ULL << 6)
 | |
| #define SNB_LLC_DATA_RD		(1ULL << 7)
 | |
| #define SNB_LLC_RFO		(1ULL << 8)
 | |
| #define SNB_LLC_IFETCH		(1ULL << 9)
 | |
| #define SNB_BUS_LOCKS		(1ULL << 10)
 | |
| #define SNB_STRM_ST		(1ULL << 11)
 | |
| #define SNB_OTHER		(1ULL << 15)
 | |
| #define SNB_RESP_ANY		(1ULL << 16)
 | |
| #define SNB_NO_SUPP		(1ULL << 17)
 | |
| #define SNB_LLC_HITM		(1ULL << 18)
 | |
| #define SNB_LLC_HITE		(1ULL << 19)
 | |
| #define SNB_LLC_HITS		(1ULL << 20)
 | |
| #define SNB_LLC_HITF		(1ULL << 21)
 | |
| #define SNB_LOCAL		(1ULL << 22)
 | |
| #define SNB_REMOTE		(0xffULL << 23)
 | |
| #define SNB_SNP_NONE		(1ULL << 31)
 | |
| #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
 | |
| #define SNB_SNP_MISS		(1ULL << 33)
 | |
| #define SNB_NO_FWD		(1ULL << 34)
 | |
| #define SNB_SNP_FWD		(1ULL << 35)
 | |
| #define SNB_HITM		(1ULL << 36)
 | |
| #define SNB_NON_DRAM		(1ULL << 37)
 | |
| 
 | |
| #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
 | |
| #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
 | |
| #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
 | |
| 
 | |
| #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
 | |
| 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
 | |
| 				 SNB_HITM)
 | |
| 
 | |
| #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
 | |
| #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
 | |
| 
 | |
| #define SNB_L3_ACCESS		SNB_RESP_ANY
 | |
| #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
 | |
| 
 | |
| static __initconst const u64 snb_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
 | |
| 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
 | |
| 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
 | |
| 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 snb_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
|  },
 | |
| 
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Notes on the events:
 | |
|  * - data reads do not include code reads (comparable to earlier tables)
 | |
|  * - data counts include speculative execution (except L1 write, dtlb, bpu)
 | |
|  * - remote node access includes remote memory, remote cache, remote mmio.
 | |
|  * - prefetches are not included in the counts because they are not
 | |
|  *   reliably counted.
 | |
|  */
 | |
| 
 | |
| #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
 | |
| #define HSW_DEMAND_RFO			BIT_ULL(1)
 | |
| #define HSW_ANY_RESPONSE		BIT_ULL(16)
 | |
| #define HSW_SUPPLIER_NONE		BIT_ULL(17)
 | |
| #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
 | |
| #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
 | |
| #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
 | |
| #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
 | |
| #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
 | |
| 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 | |
| 					 HSW_L3_MISS_REMOTE_HOP2P)
 | |
| #define HSW_SNOOP_NONE			BIT_ULL(31)
 | |
| #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
 | |
| #define HSW_SNOOP_MISS			BIT_ULL(33)
 | |
| #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
 | |
| #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
 | |
| #define HSW_SNOOP_HITM			BIT_ULL(36)
 | |
| #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
 | |
| #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
 | |
| 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
 | |
| 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
 | |
| 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
 | |
| #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
 | |
| #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
 | |
| #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
 | |
| #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
 | |
| 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
 | |
| #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
 | |
| 
 | |
| #define BDW_L3_MISS_LOCAL		BIT(26)
 | |
| #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
 | |
| 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 | |
| 					 HSW_L3_MISS_REMOTE_HOP2P)
 | |
| 
 | |
| 
 | |
| static __initconst const u64 hsw_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
 | |
| 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
 | |
| 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 hsw_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 | |
| 				       HSW_LLC_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 | |
| 				       HSW_L3_MISS|HSW_ANY_SNOOP,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 | |
| 				       HSW_LLC_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 | |
| 				       HSW_L3_MISS|HSW_ANY_SNOOP,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 | |
| 				       HSW_L3_MISS_LOCAL_DRAM|
 | |
| 				       HSW_SNOOP_DRAM,
 | |
| 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 | |
| 				       HSW_L3_MISS_REMOTE|
 | |
| 				       HSW_SNOOP_DRAM,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 | |
| 				       HSW_L3_MISS_LOCAL_DRAM|
 | |
| 				       HSW_SNOOP_DRAM,
 | |
| 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 | |
| 				       HSW_L3_MISS_REMOTE|
 | |
| 				       HSW_SNOOP_DRAM,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 westmere_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 | |
| 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	/*
 | |
| 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
 | |
| 	 * on RFO.
 | |
| 	 */
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 | |
| 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 | |
|  * See IA32 SDM Vol 3B 30.6.1.3
 | |
|  */
 | |
| 
 | |
| #define NHM_DMND_DATA_RD	(1 << 0)
 | |
| #define NHM_DMND_RFO		(1 << 1)
 | |
| #define NHM_DMND_IFETCH		(1 << 2)
 | |
| #define NHM_DMND_WB		(1 << 3)
 | |
| #define NHM_PF_DATA_RD		(1 << 4)
 | |
| #define NHM_PF_DATA_RFO		(1 << 5)
 | |
| #define NHM_PF_IFETCH		(1 << 6)
 | |
| #define NHM_OFFCORE_OTHER	(1 << 7)
 | |
| #define NHM_UNCORE_HIT		(1 << 8)
 | |
| #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
 | |
| #define NHM_OTHER_CORE_HITM	(1 << 10)
 | |
|         			/* reserved */
 | |
| #define NHM_REMOTE_CACHE_FWD	(1 << 12)
 | |
| #define NHM_REMOTE_DRAM		(1 << 13)
 | |
| #define NHM_LOCAL_DRAM		(1 << 14)
 | |
| #define NHM_NON_DRAM		(1 << 15)
 | |
| 
 | |
| #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
 | |
| #define NHM_REMOTE		(NHM_REMOTE_DRAM)
 | |
| 
 | |
| #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
 | |
| #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
 | |
| #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
 | |
| 
 | |
| #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
 | |
| #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
 | |
| #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
 | |
| 
 | |
| static __initconst const u64 nehalem_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
 | |
| 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
 | |
| 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
 | |
| 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 nehalem_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 | |
| 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	/*
 | |
| 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
 | |
| 	 * on RFO.
 | |
| 	 */
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
 | |
| 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 | |
| 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(NODE) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 core2_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
 | |
| 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
 | |
| 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
 | |
| 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
 | |
| 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 atom_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
 | |
| 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
 | |
| 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
 | |
| 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
 | |
| EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
 | |
| /* no_alloc_cycles.not_delivered */
 | |
| EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
 | |
| 	       "event=0xca,umask=0x50");
 | |
| EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
 | |
| /* uops_retired.all */
 | |
| EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
 | |
| 	       "event=0xc2,umask=0x10");
 | |
| /* uops_retired.all */
 | |
| EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
 | |
| 	       "event=0xc2,umask=0x10");
 | |
| 
 | |
| static struct attribute *slm_events_attrs[] = {
 | |
| 	EVENT_PTR(td_total_slots_slm),
 | |
| 	EVENT_PTR(td_total_slots_scale_slm),
 | |
| 	EVENT_PTR(td_fetch_bubbles_slm),
 | |
| 	EVENT_PTR(td_fetch_bubbles_scale_slm),
 | |
| 	EVENT_PTR(td_slots_issued_slm),
 | |
| 	EVENT_PTR(td_slots_retired_slm),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_slm_extra_regs[] __read_mostly =
 | |
| {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| #define SLM_DMND_READ		SNB_DMND_DATA_RD
 | |
| #define SLM_DMND_WRITE		SNB_DMND_RFO
 | |
| #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
 | |
| 
 | |
| #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
 | |
| #define SLM_LLC_ACCESS		SNB_RESP_ANY
 | |
| #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
 | |
| 
 | |
| static __initconst const u64 slm_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
 | |
| 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| static __initconst const u64 slm_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 | |
| {
 | |
|  [ C(L1D) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(L1I ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
 | |
| 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(LL  ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 | |
| 		[ C(RESULT_ACCESS) ] = 0x01b7,
 | |
| 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 | |
| 		[ C(RESULT_MISS)   ] = 0x01b7,
 | |
| 	},
 | |
|  },
 | |
|  [ C(DTLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0,
 | |
| 		[ C(RESULT_MISS)   ] = 0,
 | |
| 	},
 | |
|  },
 | |
|  [ C(ITLB) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
 | |
| 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
|  [ C(BPU ) ] = {
 | |
| 	[ C(OP_READ) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
 | |
| 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = -1,
 | |
| 		[ C(RESULT_MISS)   ] = -1,
 | |
| 	},
 | |
|  },
 | |
| };
 | |
| 
 | |
| EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
 | |
| EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
 | |
| /* UOPS_NOT_DELIVERED.ANY */
 | |
| EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
 | |
| /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
 | |
| EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
 | |
| /* UOPS_RETIRED.ANY */
 | |
| EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
 | |
| /* UOPS_ISSUED.ANY */
 | |
| EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
 | |
| 
 | |
| static struct attribute *glm_events_attrs[] = {
 | |
| 	EVENT_PTR(td_total_slots_glm),
 | |
| 	EVENT_PTR(td_total_slots_scale_glm),
 | |
| 	EVENT_PTR(td_fetch_bubbles_glm),
 | |
| 	EVENT_PTR(td_recovery_bubbles_glm),
 | |
| 	EVENT_PTR(td_slots_issued_glm),
 | |
| 	EVENT_PTR(td_slots_retired_glm),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
 | |
| #define GLM_DEMAND_RFO			BIT_ULL(1)
 | |
| #define GLM_ANY_RESPONSE		BIT_ULL(16)
 | |
| #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
 | |
| #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
 | |
| #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
 | |
| #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
 | |
| #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
 | |
| #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
 | |
| #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
 | |
| 
 | |
| static __initconst const u64 glm_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 | |
| 	[C(L1D)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(L1I)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
 | |
| 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(LL)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		},
 | |
| 	},
 | |
| 	[C(DTLB)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(ITLB)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
 | |
| 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(BPU)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
 | |
| 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static __initconst const u64 glm_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 | |
| 	[C(LL)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
 | |
| 						  GLM_LLC_ACCESS,
 | |
| 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
 | |
| 						  GLM_LLC_MISS,
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
 | |
| 						  GLM_LLC_ACCESS,
 | |
| 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
 | |
| 						  GLM_LLC_MISS,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
 | |
| 						  GLM_LLC_ACCESS,
 | |
| 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
 | |
| 						  GLM_LLC_MISS,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static __initconst const u64 glp_hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 | |
| 	[C(L1D)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(L1I)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
 | |
| 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(LL)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(DTLB)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
 | |
| 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
 | |
| 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(ITLB)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
 | |
| 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 	},
 | |
| 	[C(BPU)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
 | |
| 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= -1,
 | |
| 			[C(RESULT_MISS)]	= -1,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static __initconst const u64 glp_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 | |
| 	[C(LL)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
 | |
| 						  GLM_LLC_ACCESS,
 | |
| 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
 | |
| 						  GLM_LLC_MISS,
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
 | |
| 						  GLM_LLC_ACCESS,
 | |
| 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
 | |
| 						  GLM_LLC_MISS,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| #define TNT_LOCAL_DRAM			BIT_ULL(26)
 | |
| #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
 | |
| #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
 | |
| #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
 | |
| #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
 | |
| 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
 | |
| #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
 | |
| 
 | |
| static __initconst const u64 tnt_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 | |
| 	[C(LL)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
 | |
| 						  TNT_LLC_ACCESS,
 | |
| 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
 | |
| 						  TNT_LLC_MISS,
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
 | |
| 						  TNT_LLC_ACCESS,
 | |
| 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
 | |
| 						  TNT_LLC_MISS,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)]	= 0x0,
 | |
| 			[C(RESULT_MISS)]	= 0x0,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
 | |
| EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
 | |
| EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
 | |
| EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
 | |
| 
 | |
| static struct attribute *tnt_events_attrs[] = {
 | |
| 	EVENT_PTR(td_fe_bound_tnt),
 | |
| 	EVENT_PTR(td_retiring_tnt),
 | |
| 	EVENT_PTR(td_bad_spec_tnt),
 | |
| 	EVENT_PTR(td_be_bound_tnt),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| EVENT_ATTR_STR(mem-loads,	mem_ld_grt,	"event=0xd0,umask=0x5,ldlat=3");
 | |
| EVENT_ATTR_STR(mem-stores,	mem_st_grt,	"event=0xd0,umask=0x6");
 | |
| 
 | |
| static struct attribute *grt_mem_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_grt),
 | |
| 	EVENT_PTR(mem_st_grt),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
 | |
| 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
 | |
| 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
 | |
| 	INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
 | |
| 	EVENT_EXTRA_END
 | |
| };
 | |
| 
 | |
| #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
 | |
| #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
 | |
| #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
 | |
| #define KNL_MCDRAM_FAR		BIT_ULL(22)
 | |
| #define KNL_DDR_LOCAL		BIT_ULL(23)
 | |
| #define KNL_DDR_FAR		BIT_ULL(24)
 | |
| #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
 | |
| 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
 | |
| #define KNL_L2_READ		SLM_DMND_READ
 | |
| #define KNL_L2_WRITE		SLM_DMND_WRITE
 | |
| #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
 | |
| #define KNL_L2_ACCESS		SLM_LLC_ACCESS
 | |
| #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
 | |
| 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
 | |
| 						  SNB_NON_DRAM)
 | |
| 
 | |
| static __initconst const u64 knl_hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 | |
| 	[C(LL)] = {
 | |
| 		[C(OP_READ)] = {
 | |
| 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
 | |
| 			[C(RESULT_MISS)]   = 0,
 | |
| 		},
 | |
| 		[C(OP_WRITE)] = {
 | |
| 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
 | |
| 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
 | |
| 		},
 | |
| 		[C(OP_PREFETCH)] = {
 | |
| 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
 | |
| 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Used from PMIs where the LBRs are already disabled.
 | |
|  *
 | |
|  * This function could be called consecutively. It is required to remain in
 | |
|  * disabled state if called consecutively.
 | |
|  *
 | |
|  * During consecutive calls, the same disable value will be written to related
 | |
|  * registers, so the PMU state remains unchanged.
 | |
|  *
 | |
|  * intel_bts events don't coexist with intel PMU's BTS events because of
 | |
|  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
 | |
|  * disabled around intel PMU's event batching etc, only inside the PMI handler.
 | |
|  *
 | |
|  * Avoid PEBS_ENABLE MSR access in PMIs.
 | |
|  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
 | |
|  * It doesn't matter if the PEBS is enabled or not.
 | |
|  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
 | |
|  * access PEBS_ENABLE MSR in disable_all()/enable_all().
 | |
|  * However, there are some cases which may change PEBS status, e.g. PMI
 | |
|  * throttle. The PEBS_ENABLE should be updated where the status changes.
 | |
|  */
 | |
| static __always_inline void __intel_pmu_disable_all(bool bts)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
 | |
| 
 | |
| 	if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
 | |
| 		intel_pmu_disable_bts();
 | |
| }
 | |
| 
 | |
| static __always_inline void intel_pmu_disable_all(void)
 | |
| {
 | |
| 	__intel_pmu_disable_all(true);
 | |
| 	intel_pmu_pebs_disable_all();
 | |
| 	intel_pmu_lbr_disable_all();
 | |
| }
 | |
| 
 | |
| static void __intel_pmu_enable_all(int added, bool pmi)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
 | |
| 
 | |
| 	intel_pmu_lbr_enable_all(pmi);
 | |
| 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
 | |
| 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
 | |
| 
 | |
| 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
 | |
| 		struct perf_event *event =
 | |
| 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!event))
 | |
| 			return;
 | |
| 
 | |
| 		intel_pmu_enable_bts(event->hw.config);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pmu_enable_all(int added)
 | |
| {
 | |
| 	intel_pmu_pebs_enable_all();
 | |
| 	__intel_pmu_enable_all(added, false);
 | |
| }
 | |
| 
 | |
| static noinline int
 | |
| __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
 | |
| 				  unsigned int cnt, unsigned long flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	intel_pmu_lbr_read();
 | |
| 	cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
 | |
| 
 | |
| 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
 | |
| 	intel_pmu_enable_all(0);
 | |
| 	local_irq_restore(flags);
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| static int
 | |
| intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* must not have branches... */
 | |
| 	local_irq_save(flags);
 | |
| 	__intel_pmu_disable_all(false); /* we don't care about BTS */
 | |
| 	__intel_pmu_lbr_disable();
 | |
| 	/*            ... until here */
 | |
| 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
 | |
| }
 | |
| 
 | |
| static int
 | |
| intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* must not have branches... */
 | |
| 	local_irq_save(flags);
 | |
| 	__intel_pmu_disable_all(false); /* we don't care about BTS */
 | |
| 	__intel_pmu_arch_lbr_disable();
 | |
| 	/*            ... until here */
 | |
| 	return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Workaround for:
 | |
|  *   Intel Errata AAK100 (model 26)
 | |
|  *   Intel Errata AAP53  (model 30)
 | |
|  *   Intel Errata BD53   (model 44)
 | |
|  *
 | |
|  * The official story:
 | |
|  *   These chips need to be 'reset' when adding counters by programming the
 | |
|  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 | |
|  *   in sequence on the same PMC or on different PMCs.
 | |
|  *
 | |
|  * In practise it appears some of these events do in fact count, and
 | |
|  * we need to program all 4 events.
 | |
|  */
 | |
| static void intel_pmu_nhm_workaround(void)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	static const unsigned long nhm_magic[4] = {
 | |
| 		0x4300B5,
 | |
| 		0x4300D2,
 | |
| 		0x4300B1,
 | |
| 		0x4300B1
 | |
| 	};
 | |
| 	struct perf_event *event;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * The Errata requires below steps:
 | |
| 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
 | |
| 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
 | |
| 	 *    the corresponding PMCx;
 | |
| 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
 | |
| 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
 | |
| 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * The real steps we choose are a little different from above.
 | |
| 	 * A) To reduce MSR operations, we don't run step 1) as they
 | |
| 	 *    are already cleared before this function is called;
 | |
| 	 * B) Call x86_perf_event_update to save PMCx before configuring
 | |
| 	 *    PERFEVTSELx with magic number;
 | |
| 	 * C) With step 5), we do clear only when the PERFEVTSELx is
 | |
| 	 *    not used currently.
 | |
| 	 * D) Call x86_perf_event_set_period to restore PMCx;
 | |
| 	 */
 | |
| 
 | |
| 	/* We always operate 4 pairs of PERF Counters */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		event = cpuc->events[i];
 | |
| 		if (event)
 | |
| 			x86_perf_event_update(event);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
 | |
| 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
 | |
| 	}
 | |
| 
 | |
| 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
 | |
| 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		event = cpuc->events[i];
 | |
| 
 | |
| 		if (event) {
 | |
| 			x86_perf_event_set_period(event);
 | |
| 			__x86_pmu_enable_event(&event->hw,
 | |
| 					ARCH_PERFMON_EVENTSEL_ENABLE);
 | |
| 		} else
 | |
| 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pmu_nhm_enable_all(int added)
 | |
| {
 | |
| 	if (added)
 | |
| 		intel_pmu_nhm_workaround();
 | |
| 	intel_pmu_enable_all(added);
 | |
| }
 | |
| 
 | |
| static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
 | |
| {
 | |
| 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
 | |
| 
 | |
| 	if (cpuc->tfa_shadow != val) {
 | |
| 		cpuc->tfa_shadow = val;
 | |
| 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
 | |
| {
 | |
| 	/*
 | |
| 	 * We're going to use PMC3, make sure TFA is set before we touch it.
 | |
| 	 */
 | |
| 	if (cntr == 3)
 | |
| 		intel_set_tfa(cpuc, true);
 | |
| }
 | |
| 
 | |
| static void intel_tfa_pmu_enable_all(int added)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we find PMC3 is no longer used when we enable the PMU, we can
 | |
| 	 * clear TFA.
 | |
| 	 */
 | |
| 	if (!test_bit(3, cpuc->active_mask))
 | |
| 		intel_set_tfa(cpuc, false);
 | |
| 
 | |
| 	intel_pmu_enable_all(added);
 | |
| }
 | |
| 
 | |
| static inline u64 intel_pmu_get_status(void)
 | |
| {
 | |
| 	u64 status;
 | |
| 
 | |
| 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static inline void intel_pmu_ack_status(u64 ack)
 | |
| {
 | |
| 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
 | |
| }
 | |
| 
 | |
| static inline bool event_is_checkpointed(struct perf_event *event)
 | |
| {
 | |
| 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
 | |
| }
 | |
| 
 | |
| static inline void intel_set_masks(struct perf_event *event, int idx)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	if (event->attr.exclude_host)
 | |
| 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
 | |
| 	if (event->attr.exclude_guest)
 | |
| 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
 | |
| 	if (event_is_checkpointed(event))
 | |
| 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
 | |
| }
 | |
| 
 | |
| static inline void intel_clear_masks(struct perf_event *event, int idx)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
 | |
| 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
 | |
| 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_disable_fixed(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 ctrl_val, mask;
 | |
| 	int idx = hwc->idx;
 | |
| 
 | |
| 	if (is_topdown_idx(idx)) {
 | |
| 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 		/*
 | |
| 		 * When there are other active TopDown events,
 | |
| 		 * don't disable the fixed counter 3.
 | |
| 		 */
 | |
| 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
 | |
| 			return;
 | |
| 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
 | |
| 	}
 | |
| 
 | |
| 	intel_clear_masks(event, idx);
 | |
| 
 | |
| 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
 | |
| 	rdmsrl(hwc->config_base, ctrl_val);
 | |
| 	ctrl_val &= ~mask;
 | |
| 	wrmsrl(hwc->config_base, ctrl_val);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_disable_event(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int idx = hwc->idx;
 | |
| 
 | |
| 	switch (idx) {
 | |
| 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
 | |
| 		intel_clear_masks(event, idx);
 | |
| 		x86_pmu_disable_event(event);
 | |
| 		break;
 | |
| 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
 | |
| 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
 | |
| 		intel_pmu_disable_fixed(event);
 | |
| 		break;
 | |
| 	case INTEL_PMC_IDX_FIXED_BTS:
 | |
| 		intel_pmu_disable_bts();
 | |
| 		intel_pmu_drain_bts_buffer();
 | |
| 		return;
 | |
| 	case INTEL_PMC_IDX_FIXED_VLBR:
 | |
| 		intel_clear_masks(event, idx);
 | |
| 		break;
 | |
| 	default:
 | |
| 		intel_clear_masks(event, idx);
 | |
| 		pr_warn("Failed to disable the event with invalid index %d\n",
 | |
| 			idx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Needs to be called after x86_pmu_disable_event,
 | |
| 	 * so we don't trigger the event without PEBS bit set.
 | |
| 	 */
 | |
| 	if (unlikely(event->attr.precise_ip))
 | |
| 		intel_pmu_pebs_disable(event);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_del_event(struct perf_event *event)
 | |
| {
 | |
| 	if (needs_branch_stack(event))
 | |
| 		intel_pmu_lbr_del(event);
 | |
| 	if (event->attr.precise_ip)
 | |
| 		intel_pmu_pebs_del(event);
 | |
| }
 | |
| 
 | |
| static int icl_set_topdown_event_period(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 left = local64_read(&hwc->period_left);
 | |
| 
 | |
| 	/*
 | |
| 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
 | |
| 	 * Software should start both registers, PERF_METRICS and fixed
 | |
| 	 * counter 3, from zero.
 | |
| 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
 | |
| 	 * After that, both MSRs will be cleared for each read.
 | |
| 	 * Don't need to clear them again.
 | |
| 	 */
 | |
| 	if (left == x86_pmu.max_period) {
 | |
| 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
 | |
| 		wrmsrl(MSR_PERF_METRICS, 0);
 | |
| 		hwc->saved_slots = 0;
 | |
| 		hwc->saved_metric = 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((hwc->saved_slots) && is_slots_event(event)) {
 | |
| 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
 | |
| 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
 | |
| 	}
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int adl_set_topdown_event_period(struct perf_event *event)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
 | |
| 
 | |
| 	if (pmu->cpu_type != hybrid_big)
 | |
| 		return 0;
 | |
| 
 | |
| 	return icl_set_topdown_event_period(event);
 | |
| }
 | |
| 
 | |
| static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	/*
 | |
| 	 * The metric is reported as an 8bit integer fraction
 | |
| 	 * suming up to 0xff.
 | |
| 	 * slots-in-metric = (Metric / 0xff) * slots
 | |
| 	 */
 | |
| 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
 | |
| 	return  mul_u64_u32_div(slots, val, 0xff);
 | |
| }
 | |
| 
 | |
| static u64 icl_get_topdown_value(struct perf_event *event,
 | |
| 				       u64 slots, u64 metrics)
 | |
| {
 | |
| 	int idx = event->hw.idx;
 | |
| 	u64 delta;
 | |
| 
 | |
| 	if (is_metric_idx(idx))
 | |
| 		delta = icl_get_metrics_event_value(metrics, slots, idx);
 | |
| 	else
 | |
| 		delta = slots;
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| static void __icl_update_topdown_event(struct perf_event *event,
 | |
| 				       u64 slots, u64 metrics,
 | |
| 				       u64 last_slots, u64 last_metrics)
 | |
| {
 | |
| 	u64 delta, last = 0;
 | |
| 
 | |
| 	delta = icl_get_topdown_value(event, slots, metrics);
 | |
| 	if (last_slots)
 | |
| 		last = icl_get_topdown_value(event, last_slots, last_metrics);
 | |
| 
 | |
| 	/*
 | |
| 	 * The 8bit integer fraction of metric may be not accurate,
 | |
| 	 * especially when the changes is very small.
 | |
| 	 * For example, if only a few bad_spec happens, the fraction
 | |
| 	 * may be reduced from 1 to 0. If so, the bad_spec event value
 | |
| 	 * will be 0 which is definitely less than the last value.
 | |
| 	 * Avoid update event->count for this case.
 | |
| 	 */
 | |
| 	if (delta > last) {
 | |
| 		delta -= last;
 | |
| 		local64_add(delta, &event->count);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
 | |
| 				      u64 metrics, int metric_end)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct perf_event *other;
 | |
| 	int idx;
 | |
| 
 | |
| 	event->hw.saved_slots = slots;
 | |
| 	event->hw.saved_metric = metrics;
 | |
| 
 | |
| 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
 | |
| 		if (!is_topdown_idx(idx))
 | |
| 			continue;
 | |
| 		other = cpuc->events[idx];
 | |
| 		other->hw.saved_slots = slots;
 | |
| 		other->hw.saved_metric = metrics;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update all active Topdown events.
 | |
|  *
 | |
|  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
 | |
|  * modify by a NMI. PMU has to be disabled before calling this function.
 | |
|  */
 | |
| 
 | |
| static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct perf_event *other;
 | |
| 	u64 slots, metrics;
 | |
| 	bool reset = true;
 | |
| 	int idx;
 | |
| 
 | |
| 	/* read Fixed counter 3 */
 | |
| 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
 | |
| 	if (!slots)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* read PERF_METRICS */
 | |
| 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
 | |
| 
 | |
| 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
 | |
| 		if (!is_topdown_idx(idx))
 | |
| 			continue;
 | |
| 		other = cpuc->events[idx];
 | |
| 		__icl_update_topdown_event(other, slots, metrics,
 | |
| 					   event ? event->hw.saved_slots : 0,
 | |
| 					   event ? event->hw.saved_metric : 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check and update this event, which may have been cleared
 | |
| 	 * in active_mask e.g. x86_pmu_stop()
 | |
| 	 */
 | |
| 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
 | |
| 		__icl_update_topdown_event(event, slots, metrics,
 | |
| 					   event->hw.saved_slots,
 | |
| 					   event->hw.saved_metric);
 | |
| 
 | |
| 		/*
 | |
| 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
 | |
| 		 * then drain the delta, which indicates context switch for
 | |
| 		 * counting.
 | |
| 		 * Save metric and slots for context switch.
 | |
| 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
 | |
| 		 * Because the values will be restored in next schedule in.
 | |
| 		 */
 | |
| 		update_saved_topdown_regs(event, slots, metrics, metric_end);
 | |
| 		reset = false;
 | |
| 	}
 | |
| 
 | |
| 	if (reset) {
 | |
| 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
 | |
| 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
 | |
| 		wrmsrl(MSR_PERF_METRICS, 0);
 | |
| 		if (event)
 | |
| 			update_saved_topdown_regs(event, 0, 0, metric_end);
 | |
| 	}
 | |
| 
 | |
| 	return slots;
 | |
| }
 | |
| 
 | |
| static u64 icl_update_topdown_event(struct perf_event *event)
 | |
| {
 | |
| 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
 | |
| 						 x86_pmu.num_topdown_events - 1);
 | |
| }
 | |
| 
 | |
| static u64 adl_update_topdown_event(struct perf_event *event)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
 | |
| 
 | |
| 	if (pmu->cpu_type != hybrid_big)
 | |
| 		return 0;
 | |
| 
 | |
| 	return icl_update_topdown_event(event);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void intel_pmu_read_topdown_event(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	/* Only need to call update_topdown_event() once for group read. */
 | |
| 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
 | |
| 	    !is_slots_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 	x86_pmu.update_topdown_event(event);
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_read_event(struct perf_event *event)
 | |
| {
 | |
| 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
 | |
| 		intel_pmu_auto_reload_read(event);
 | |
| 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
 | |
| 		intel_pmu_read_topdown_event(event);
 | |
| 	else
 | |
| 		x86_perf_event_update(event);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_enable_fixed(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 ctrl_val, mask, bits = 0;
 | |
| 	int idx = hwc->idx;
 | |
| 
 | |
| 	if (is_topdown_idx(idx)) {
 | |
| 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 		/*
 | |
| 		 * When there are other active TopDown events,
 | |
| 		 * don't enable the fixed counter 3 again.
 | |
| 		 */
 | |
| 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
 | |
| 			return;
 | |
| 
 | |
| 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
 | |
| 	}
 | |
| 
 | |
| 	intel_set_masks(event, idx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable IRQ generation (0x8), if not PEBS,
 | |
| 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
 | |
| 	 * if requested:
 | |
| 	 */
 | |
| 	if (!event->attr.precise_ip)
 | |
| 		bits |= 0x8;
 | |
| 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
 | |
| 		bits |= 0x2;
 | |
| 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
 | |
| 		bits |= 0x1;
 | |
| 
 | |
| 	/*
 | |
| 	 * ANY bit is supported in v3 and up
 | |
| 	 */
 | |
| 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
 | |
| 		bits |= 0x4;
 | |
| 
 | |
| 	idx -= INTEL_PMC_IDX_FIXED;
 | |
| 	bits <<= (idx * 4);
 | |
| 	mask = 0xfULL << (idx * 4);
 | |
| 
 | |
| 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
 | |
| 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
 | |
| 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
 | |
| 	}
 | |
| 
 | |
| 	rdmsrl(hwc->config_base, ctrl_val);
 | |
| 	ctrl_val &= ~mask;
 | |
| 	ctrl_val |= bits;
 | |
| 	wrmsrl(hwc->config_base, ctrl_val);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_enable_event(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int idx = hwc->idx;
 | |
| 
 | |
| 	if (unlikely(event->attr.precise_ip))
 | |
| 		intel_pmu_pebs_enable(event);
 | |
| 
 | |
| 	switch (idx) {
 | |
| 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
 | |
| 		intel_set_masks(event, idx);
 | |
| 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 | |
| 		break;
 | |
| 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
 | |
| 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
 | |
| 		intel_pmu_enable_fixed(event);
 | |
| 		break;
 | |
| 	case INTEL_PMC_IDX_FIXED_BTS:
 | |
| 		if (!__this_cpu_read(cpu_hw_events.enabled))
 | |
| 			return;
 | |
| 		intel_pmu_enable_bts(hwc->config);
 | |
| 		break;
 | |
| 	case INTEL_PMC_IDX_FIXED_VLBR:
 | |
| 		intel_set_masks(event, idx);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_warn("Failed to enable the event with invalid index %d\n",
 | |
| 			idx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pmu_add_event(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.precise_ip)
 | |
| 		intel_pmu_pebs_add(event);
 | |
| 	if (needs_branch_stack(event))
 | |
| 		intel_pmu_lbr_add(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Save and restart an expired event. Called by NMI contexts,
 | |
|  * so it has to be careful about preempting normal event ops:
 | |
|  */
 | |
| int intel_pmu_save_and_restart(struct perf_event *event)
 | |
| {
 | |
| 	x86_perf_event_update(event);
 | |
| 	/*
 | |
| 	 * For a checkpointed counter always reset back to 0.  This
 | |
| 	 * avoids a situation where the counter overflows, aborts the
 | |
| 	 * transaction and is then set back to shortly before the
 | |
| 	 * overflow, and overflows and aborts again.
 | |
| 	 */
 | |
| 	if (unlikely(event_is_checkpointed(event))) {
 | |
| 		/* No race with NMIs because the counter should not be armed */
 | |
| 		wrmsrl(event->hw.event_base, 0);
 | |
| 		local64_set(&event->hw.prev_count, 0);
 | |
| 	}
 | |
| 	return x86_perf_event_set_period(event);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_reset(void)
 | |
| {
 | |
| 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
 | |
| 	int num_counters = hybrid(cpuc->pmu, num_counters);
 | |
| 	unsigned long flags;
 | |
| 	int idx;
 | |
| 
 | |
| 	if (!num_counters)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
 | |
| 
 | |
| 	for (idx = 0; idx < num_counters; idx++) {
 | |
| 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
 | |
| 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
 | |
| 	}
 | |
| 	for (idx = 0; idx < num_counters_fixed; idx++) {
 | |
| 		if (fixed_counter_disabled(idx, cpuc->pmu))
 | |
| 			continue;
 | |
| 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
 | |
| 	}
 | |
| 
 | |
| 	if (ds)
 | |
| 		ds->bts_index = ds->bts_buffer_base;
 | |
| 
 | |
| 	/* Ack all overflows and disable fixed counters */
 | |
| 	if (x86_pmu.version >= 2) {
 | |
| 		intel_pmu_ack_status(intel_pmu_get_status());
 | |
| 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Reset LBRs and LBR freezing */
 | |
| 	if (x86_pmu.lbr_nr) {
 | |
| 		update_debugctlmsr(get_debugctlmsr() &
 | |
| 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static int handle_pmi_common(struct pt_regs *regs, u64 status)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct perf_guest_info_callbacks *guest_cbs;
 | |
| 	int bit;
 | |
| 	int handled = 0;
 | |
| 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
 | |
| 
 | |
| 	inc_irq_stat(apic_perf_irqs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore a range of extra bits in status that do not indicate
 | |
| 	 * overflow by themselves.
 | |
| 	 */
 | |
| 	status &= ~(GLOBAL_STATUS_COND_CHG |
 | |
| 		    GLOBAL_STATUS_ASIF |
 | |
| 		    GLOBAL_STATUS_LBRS_FROZEN);
 | |
| 	if (!status)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * In case multiple PEBS events are sampled at the same time,
 | |
| 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
 | |
| 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
 | |
| 	 * having their bits set in the status register. This is a sign
 | |
| 	 * that there was at least one PEBS record pending at the time
 | |
| 	 * of the PMU interrupt. PEBS counters must only be processed
 | |
| 	 * via the drain_pebs() calls and not via the regular sample
 | |
| 	 * processing loop coming after that the function, otherwise
 | |
| 	 * phony regular samples may be generated in the sampling buffer
 | |
| 	 * not marked with the EXACT tag. Another possibility is to have
 | |
| 	 * one PEBS event and at least one non-PEBS event whic hoverflows
 | |
| 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
 | |
| 	 * not be set, yet the overflow status bit for the PEBS counter will
 | |
| 	 * be on Skylake.
 | |
| 	 *
 | |
| 	 * To avoid this problem, we systematically ignore the PEBS-enabled
 | |
| 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
 | |
| 	 * events via drain_pebs().
 | |
| 	 */
 | |
| 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
 | |
| 		status &= ~cpuc->pebs_enabled;
 | |
| 	else
 | |
| 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
 | |
| 
 | |
| 	/*
 | |
| 	 * PEBS overflow sets bit 62 in the global status register
 | |
| 	 */
 | |
| 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
 | |
| 		u64 pebs_enabled = cpuc->pebs_enabled;
 | |
| 
 | |
| 		handled++;
 | |
| 		x86_pmu.drain_pebs(regs, &data);
 | |
| 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
 | |
| 
 | |
| 		/*
 | |
| 		 * PMI throttle may be triggered, which stops the PEBS event.
 | |
| 		 * Although cpuc->pebs_enabled is updated accordingly, the
 | |
| 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
 | |
| 		 * cpuc->enabled has been forced to 0 in PMI.
 | |
| 		 * Update the MSR if pebs_enabled is changed.
 | |
| 		 */
 | |
| 		if (pebs_enabled != cpuc->pebs_enabled)
 | |
| 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel PT
 | |
| 	 */
 | |
| 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
 | |
| 		handled++;
 | |
| 
 | |
| 		guest_cbs = perf_get_guest_cbs();
 | |
| 		if (likely(!guest_cbs || !guest_cbs->handle_intel_pt_intr()))
 | |
| 			intel_pt_interrupt();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel Perf mertrics
 | |
| 	 */
 | |
| 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
 | |
| 		handled++;
 | |
| 		if (x86_pmu.update_topdown_event)
 | |
| 			x86_pmu.update_topdown_event(NULL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Checkpointed counters can lead to 'spurious' PMIs because the
 | |
| 	 * rollback caused by the PMI will have cleared the overflow status
 | |
| 	 * bit. Therefore always force probe these counters.
 | |
| 	 */
 | |
| 	status |= cpuc->intel_cp_status;
 | |
| 
 | |
| 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
 | |
| 		struct perf_event *event = cpuc->events[bit];
 | |
| 
 | |
| 		handled++;
 | |
| 
 | |
| 		if (!test_bit(bit, cpuc->active_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!intel_pmu_save_and_restart(event))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_sample_data_init(&data, 0, event->hw.last_period);
 | |
| 
 | |
| 		if (has_branch_stack(event))
 | |
| 			data.br_stack = &cpuc->lbr_stack;
 | |
| 
 | |
| 		if (perf_event_overflow(event, &data, regs))
 | |
| 			x86_pmu_stop(event, 0);
 | |
| 	}
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This handler is triggered by the local APIC, so the APIC IRQ handling
 | |
|  * rules apply:
 | |
|  */
 | |
| static int intel_pmu_handle_irq(struct pt_regs *regs)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
 | |
| 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
 | |
| 	int loops;
 | |
| 	u64 status;
 | |
| 	int handled;
 | |
| 	int pmu_enabled;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save the PMU state.
 | |
| 	 * It needs to be restored when leaving the handler.
 | |
| 	 */
 | |
| 	pmu_enabled = cpuc->enabled;
 | |
| 	/*
 | |
| 	 * In general, the early ACK is only applied for old platforms.
 | |
| 	 * For the big core starts from Haswell, the late ACK should be
 | |
| 	 * applied.
 | |
| 	 * For the small core after Tremont, we have to do the ACK right
 | |
| 	 * before re-enabling counters, which is in the middle of the
 | |
| 	 * NMI handler.
 | |
| 	 */
 | |
| 	if (!late_ack && !mid_ack)
 | |
| 		apic_write(APIC_LVTPC, APIC_DM_NMI);
 | |
| 	intel_bts_disable_local();
 | |
| 	cpuc->enabled = 0;
 | |
| 	__intel_pmu_disable_all(true);
 | |
| 	handled = intel_pmu_drain_bts_buffer();
 | |
| 	handled += intel_bts_interrupt();
 | |
| 	status = intel_pmu_get_status();
 | |
| 	if (!status)
 | |
| 		goto done;
 | |
| 
 | |
| 	loops = 0;
 | |
| again:
 | |
| 	intel_pmu_lbr_read();
 | |
| 	intel_pmu_ack_status(status);
 | |
| 	if (++loops > 100) {
 | |
| 		static bool warned;
 | |
| 
 | |
| 		if (!warned) {
 | |
| 			WARN(1, "perfevents: irq loop stuck!\n");
 | |
| 			perf_event_print_debug();
 | |
| 			warned = true;
 | |
| 		}
 | |
| 		intel_pmu_reset();
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	handled += handle_pmi_common(regs, status);
 | |
| 
 | |
| 	/*
 | |
| 	 * Repeat if there is more work to be done:
 | |
| 	 */
 | |
| 	status = intel_pmu_get_status();
 | |
| 	if (status)
 | |
| 		goto again;
 | |
| 
 | |
| done:
 | |
| 	if (mid_ack)
 | |
| 		apic_write(APIC_LVTPC, APIC_DM_NMI);
 | |
| 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
 | |
| 	cpuc->enabled = pmu_enabled;
 | |
| 	if (pmu_enabled)
 | |
| 		__intel_pmu_enable_all(0, true);
 | |
| 	intel_bts_enable_local();
 | |
| 
 | |
| 	/*
 | |
| 	 * Only unmask the NMI after the overflow counters
 | |
| 	 * have been reset. This avoids spurious NMIs on
 | |
| 	 * Haswell CPUs.
 | |
| 	 */
 | |
| 	if (late_ack)
 | |
| 		apic_write(APIC_LVTPC, APIC_DM_NMI);
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| intel_bts_constraints(struct perf_event *event)
 | |
| {
 | |
| 	if (unlikely(intel_pmu_has_bts(event)))
 | |
| 		return &bts_constraint;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: matches a fake event, like Fixed2.
 | |
|  */
 | |
| static struct event_constraint *
 | |
| intel_vlbr_constraints(struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c = &vlbr_constraint;
 | |
| 
 | |
| 	if (unlikely(constraint_match(c, event->hw.config)))
 | |
| 		return c;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int intel_alt_er(struct cpu_hw_events *cpuc,
 | |
| 			int idx, u64 config)
 | |
| {
 | |
| 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
 | |
| 	int alt_idx = idx;
 | |
| 
 | |
| 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
 | |
| 		return idx;
 | |
| 
 | |
| 	if (idx == EXTRA_REG_RSP_0)
 | |
| 		alt_idx = EXTRA_REG_RSP_1;
 | |
| 
 | |
| 	if (idx == EXTRA_REG_RSP_1)
 | |
| 		alt_idx = EXTRA_REG_RSP_0;
 | |
| 
 | |
| 	if (config & ~extra_regs[alt_idx].valid_mask)
 | |
| 		return idx;
 | |
| 
 | |
| 	return alt_idx;
 | |
| }
 | |
| 
 | |
| static void intel_fixup_er(struct perf_event *event, int idx)
 | |
| {
 | |
| 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
 | |
| 	event->hw.extra_reg.idx = idx;
 | |
| 
 | |
| 	if (idx == EXTRA_REG_RSP_0) {
 | |
| 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
 | |
| 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
 | |
| 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
 | |
| 	} else if (idx == EXTRA_REG_RSP_1) {
 | |
| 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
 | |
| 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
 | |
| 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * manage allocation of shared extra msr for certain events
 | |
|  *
 | |
|  * sharing can be:
 | |
|  * per-cpu: to be shared between the various events on a single PMU
 | |
|  * per-core: per-cpu + shared by HT threads
 | |
|  */
 | |
| static struct event_constraint *
 | |
| __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
 | |
| 				   struct perf_event *event,
 | |
| 				   struct hw_perf_event_extra *reg)
 | |
| {
 | |
| 	struct event_constraint *c = &emptyconstraint;
 | |
| 	struct er_account *era;
 | |
| 	unsigned long flags;
 | |
| 	int idx = reg->idx;
 | |
| 
 | |
| 	/*
 | |
| 	 * reg->alloc can be set due to existing state, so for fake cpuc we
 | |
| 	 * need to ignore this, otherwise we might fail to allocate proper fake
 | |
| 	 * state for this extra reg constraint. Also see the comment below.
 | |
| 	 */
 | |
| 	if (reg->alloc && !cpuc->is_fake)
 | |
| 		return NULL; /* call x86_get_event_constraint() */
 | |
| 
 | |
| again:
 | |
| 	era = &cpuc->shared_regs->regs[idx];
 | |
| 	/*
 | |
| 	 * we use spin_lock_irqsave() to avoid lockdep issues when
 | |
| 	 * passing a fake cpuc
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&era->lock, flags);
 | |
| 
 | |
| 	if (!atomic_read(&era->ref) || era->config == reg->config) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If its a fake cpuc -- as per validate_{group,event}() we
 | |
| 		 * shouldn't touch event state and we can avoid doing so
 | |
| 		 * since both will only call get_event_constraints() once
 | |
| 		 * on each event, this avoids the need for reg->alloc.
 | |
| 		 *
 | |
| 		 * Not doing the ER fixup will only result in era->reg being
 | |
| 		 * wrong, but since we won't actually try and program hardware
 | |
| 		 * this isn't a problem either.
 | |
| 		 */
 | |
| 		if (!cpuc->is_fake) {
 | |
| 			if (idx != reg->idx)
 | |
| 				intel_fixup_er(event, idx);
 | |
| 
 | |
| 			/*
 | |
| 			 * x86_schedule_events() can call get_event_constraints()
 | |
| 			 * multiple times on events in the case of incremental
 | |
| 			 * scheduling(). reg->alloc ensures we only do the ER
 | |
| 			 * allocation once.
 | |
| 			 */
 | |
| 			reg->alloc = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* lock in msr value */
 | |
| 		era->config = reg->config;
 | |
| 		era->reg = reg->reg;
 | |
| 
 | |
| 		/* one more user */
 | |
| 		atomic_inc(&era->ref);
 | |
| 
 | |
| 		/*
 | |
| 		 * need to call x86_get_event_constraint()
 | |
| 		 * to check if associated event has constraints
 | |
| 		 */
 | |
| 		c = NULL;
 | |
| 	} else {
 | |
| 		idx = intel_alt_er(cpuc, idx, reg->config);
 | |
| 		if (idx != reg->idx) {
 | |
| 			raw_spin_unlock_irqrestore(&era->lock, flags);
 | |
| 			goto again;
 | |
| 		}
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&era->lock, flags);
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static void
 | |
| __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
 | |
| 				   struct hw_perf_event_extra *reg)
 | |
| {
 | |
| 	struct er_account *era;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only put constraint if extra reg was actually allocated. Also takes
 | |
| 	 * care of event which do not use an extra shared reg.
 | |
| 	 *
 | |
| 	 * Also, if this is a fake cpuc we shouldn't touch any event state
 | |
| 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
 | |
| 	 * either since it'll be thrown out.
 | |
| 	 */
 | |
| 	if (!reg->alloc || cpuc->is_fake)
 | |
| 		return;
 | |
| 
 | |
| 	era = &cpuc->shared_regs->regs[reg->idx];
 | |
| 
 | |
| 	/* one fewer user */
 | |
| 	atomic_dec(&era->ref);
 | |
| 
 | |
| 	/* allocate again next time */
 | |
| 	reg->alloc = 0;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
 | |
| 			      struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c = NULL, *d;
 | |
| 	struct hw_perf_event_extra *xreg, *breg;
 | |
| 
 | |
| 	xreg = &event->hw.extra_reg;
 | |
| 	if (xreg->idx != EXTRA_REG_NONE) {
 | |
| 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
 | |
| 		if (c == &emptyconstraint)
 | |
| 			return c;
 | |
| 	}
 | |
| 	breg = &event->hw.branch_reg;
 | |
| 	if (breg->idx != EXTRA_REG_NONE) {
 | |
| 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
 | |
| 		if (d == &emptyconstraint) {
 | |
| 			__intel_shared_reg_put_constraints(cpuc, xreg);
 | |
| 			c = d;
 | |
| 		}
 | |
| 	}
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| struct event_constraint *
 | |
| x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	if (event_constraints) {
 | |
| 		for_each_event_constraint(c, event_constraints) {
 | |
| 			if (constraint_match(c, event->hw.config)) {
 | |
| 				event->hw.flags |= c->flags;
 | |
| 				return c;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return &hybrid_var(cpuc->pmu, unconstrained);
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			    struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	c = intel_vlbr_constraints(event);
 | |
| 	if (c)
 | |
| 		return c;
 | |
| 
 | |
| 	c = intel_bts_constraints(event);
 | |
| 	if (c)
 | |
| 		return c;
 | |
| 
 | |
| 	c = intel_shared_regs_constraints(cpuc, event);
 | |
| 	if (c)
 | |
| 		return c;
 | |
| 
 | |
| 	c = intel_pebs_constraints(event);
 | |
| 	if (c)
 | |
| 		return c;
 | |
| 
 | |
| 	return x86_get_event_constraints(cpuc, idx, event);
 | |
| }
 | |
| 
 | |
| static void
 | |
| intel_start_scheduling(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
 | |
| 	struct intel_excl_states *xl;
 | |
| 	int tid = cpuc->excl_thread_id;
 | |
| 
 | |
| 	/*
 | |
| 	 * nothing needed if in group validation mode
 | |
| 	 */
 | |
| 	if (cpuc->is_fake || !is_ht_workaround_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * no exclusion needed
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!excl_cntrs))
 | |
| 		return;
 | |
| 
 | |
| 	xl = &excl_cntrs->states[tid];
 | |
| 
 | |
| 	xl->sched_started = true;
 | |
| 	/*
 | |
| 	 * lock shared state until we are done scheduling
 | |
| 	 * in stop_event_scheduling()
 | |
| 	 * makes scheduling appear as a transaction
 | |
| 	 */
 | |
| 	raw_spin_lock(&excl_cntrs->lock);
 | |
| }
 | |
| 
 | |
| static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
 | |
| {
 | |
| 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
 | |
| 	struct event_constraint *c = cpuc->event_constraint[idx];
 | |
| 	struct intel_excl_states *xl;
 | |
| 	int tid = cpuc->excl_thread_id;
 | |
| 
 | |
| 	if (cpuc->is_fake || !is_ht_workaround_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!excl_cntrs))
 | |
| 		return;
 | |
| 
 | |
| 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
 | |
| 		return;
 | |
| 
 | |
| 	xl = &excl_cntrs->states[tid];
 | |
| 
 | |
| 	lockdep_assert_held(&excl_cntrs->lock);
 | |
| 
 | |
| 	if (c->flags & PERF_X86_EVENT_EXCL)
 | |
| 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
 | |
| 	else
 | |
| 		xl->state[cntr] = INTEL_EXCL_SHARED;
 | |
| }
 | |
| 
 | |
| static void
 | |
| intel_stop_scheduling(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
 | |
| 	struct intel_excl_states *xl;
 | |
| 	int tid = cpuc->excl_thread_id;
 | |
| 
 | |
| 	/*
 | |
| 	 * nothing needed if in group validation mode
 | |
| 	 */
 | |
| 	if (cpuc->is_fake || !is_ht_workaround_enabled())
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * no exclusion needed
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!excl_cntrs))
 | |
| 		return;
 | |
| 
 | |
| 	xl = &excl_cntrs->states[tid];
 | |
| 
 | |
| 	xl->sched_started = false;
 | |
| 	/*
 | |
| 	 * release shared state lock (acquired in intel_start_scheduling())
 | |
| 	 */
 | |
| 	raw_spin_unlock(&excl_cntrs->lock);
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
 | |
| {
 | |
| 	WARN_ON_ONCE(!cpuc->constraint_list);
 | |
| 
 | |
| 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
 | |
| 		struct event_constraint *cx;
 | |
| 
 | |
| 		/*
 | |
| 		 * grab pre-allocated constraint entry
 | |
| 		 */
 | |
| 		cx = &cpuc->constraint_list[idx];
 | |
| 
 | |
| 		/*
 | |
| 		 * initialize dynamic constraint
 | |
| 		 * with static constraint
 | |
| 		 */
 | |
| 		*cx = *c;
 | |
| 
 | |
| 		/*
 | |
| 		 * mark constraint as dynamic
 | |
| 		 */
 | |
| 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
 | |
| 		c = cx;
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
 | |
| 			   int idx, struct event_constraint *c)
 | |
| {
 | |
| 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
 | |
| 	struct intel_excl_states *xlo;
 | |
| 	int tid = cpuc->excl_thread_id;
 | |
| 	int is_excl, i, w;
 | |
| 
 | |
| 	/*
 | |
| 	 * validating a group does not require
 | |
| 	 * enforcing cross-thread  exclusion
 | |
| 	 */
 | |
| 	if (cpuc->is_fake || !is_ht_workaround_enabled())
 | |
| 		return c;
 | |
| 
 | |
| 	/*
 | |
| 	 * no exclusion needed
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!excl_cntrs))
 | |
| 		return c;
 | |
| 
 | |
| 	/*
 | |
| 	 * because we modify the constraint, we need
 | |
| 	 * to make a copy. Static constraints come
 | |
| 	 * from static const tables.
 | |
| 	 *
 | |
| 	 * only needed when constraint has not yet
 | |
| 	 * been cloned (marked dynamic)
 | |
| 	 */
 | |
| 	c = dyn_constraint(cpuc, c, idx);
 | |
| 
 | |
| 	/*
 | |
| 	 * From here on, the constraint is dynamic.
 | |
| 	 * Either it was just allocated above, or it
 | |
| 	 * was allocated during a earlier invocation
 | |
| 	 * of this function
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * state of sibling HT
 | |
| 	 */
 | |
| 	xlo = &excl_cntrs->states[tid ^ 1];
 | |
| 
 | |
| 	/*
 | |
| 	 * event requires exclusive counter access
 | |
| 	 * across HT threads
 | |
| 	 */
 | |
| 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
 | |
| 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
 | |
| 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
 | |
| 		if (!cpuc->n_excl++)
 | |
| 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Modify static constraint with current dynamic
 | |
| 	 * state of thread
 | |
| 	 *
 | |
| 	 * EXCLUSIVE: sibling counter measuring exclusive event
 | |
| 	 * SHARED   : sibling counter measuring non-exclusive event
 | |
| 	 * UNUSED   : sibling counter unused
 | |
| 	 */
 | |
| 	w = c->weight;
 | |
| 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
 | |
| 		/*
 | |
| 		 * exclusive event in sibling counter
 | |
| 		 * our corresponding counter cannot be used
 | |
| 		 * regardless of our event
 | |
| 		 */
 | |
| 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
 | |
| 			__clear_bit(i, c->idxmsk);
 | |
| 			w--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * if measuring an exclusive event, sibling
 | |
| 		 * measuring non-exclusive, then counter cannot
 | |
| 		 * be used
 | |
| 		 */
 | |
| 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
 | |
| 			__clear_bit(i, c->idxmsk);
 | |
| 			w--;
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if we return an empty mask, then switch
 | |
| 	 * back to static empty constraint to avoid
 | |
| 	 * the cost of freeing later on
 | |
| 	 */
 | |
| 	if (!w)
 | |
| 		c = &emptyconstraint;
 | |
| 
 | |
| 	c->weight = w;
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			    struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c1, *c2;
 | |
| 
 | |
| 	c1 = cpuc->event_constraint[idx];
 | |
| 
 | |
| 	/*
 | |
| 	 * first time only
 | |
| 	 * - static constraint: no change across incremental scheduling calls
 | |
| 	 * - dynamic constraint: handled by intel_get_excl_constraints()
 | |
| 	 */
 | |
| 	c2 = __intel_get_event_constraints(cpuc, idx, event);
 | |
| 	if (c1) {
 | |
| 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
 | |
| 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
 | |
| 		c1->weight = c2->weight;
 | |
| 		c2 = c1;
 | |
| 	}
 | |
| 
 | |
| 	if (cpuc->excl_cntrs)
 | |
| 		return intel_get_excl_constraints(cpuc, event, idx, c2);
 | |
| 
 | |
| 	return c2;
 | |
| }
 | |
| 
 | |
| static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
 | |
| 		struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
 | |
| 	int tid = cpuc->excl_thread_id;
 | |
| 	struct intel_excl_states *xl;
 | |
| 
 | |
| 	/*
 | |
| 	 * nothing needed if in group validation mode
 | |
| 	 */
 | |
| 	if (cpuc->is_fake)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!excl_cntrs))
 | |
| 		return;
 | |
| 
 | |
| 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
 | |
| 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
 | |
| 		if (!--cpuc->n_excl)
 | |
| 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If event was actually assigned, then mark the counter state as
 | |
| 	 * unused now.
 | |
| 	 */
 | |
| 	if (hwc->idx >= 0) {
 | |
| 		xl = &excl_cntrs->states[tid];
 | |
| 
 | |
| 		/*
 | |
| 		 * put_constraint may be called from x86_schedule_events()
 | |
| 		 * which already has the lock held so here make locking
 | |
| 		 * conditional.
 | |
| 		 */
 | |
| 		if (!xl->sched_started)
 | |
| 			raw_spin_lock(&excl_cntrs->lock);
 | |
| 
 | |
| 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
 | |
| 
 | |
| 		if (!xl->sched_started)
 | |
| 			raw_spin_unlock(&excl_cntrs->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
 | |
| 					struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event_extra *reg;
 | |
| 
 | |
| 	reg = &event->hw.extra_reg;
 | |
| 	if (reg->idx != EXTRA_REG_NONE)
 | |
| 		__intel_shared_reg_put_constraints(cpuc, reg);
 | |
| 
 | |
| 	reg = &event->hw.branch_reg;
 | |
| 	if (reg->idx != EXTRA_REG_NONE)
 | |
| 		__intel_shared_reg_put_constraints(cpuc, reg);
 | |
| }
 | |
| 
 | |
| static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
 | |
| 					struct perf_event *event)
 | |
| {
 | |
| 	intel_put_shared_regs_event_constraints(cpuc, event);
 | |
| 
 | |
| 	/*
 | |
| 	 * is PMU has exclusive counter restrictions, then
 | |
| 	 * all events are subject to and must call the
 | |
| 	 * put_excl_constraints() routine
 | |
| 	 */
 | |
| 	if (cpuc->excl_cntrs)
 | |
| 		intel_put_excl_constraints(cpuc, event);
 | |
| }
 | |
| 
 | |
| static void intel_pebs_aliases_core2(struct perf_event *event)
 | |
| {
 | |
| 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
 | |
| 		/*
 | |
| 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
 | |
| 		 * (0x003c) so that we can use it with PEBS.
 | |
| 		 *
 | |
| 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
 | |
| 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
 | |
| 		 * (0x00c0), which is a PEBS capable event, to get the same
 | |
| 		 * count.
 | |
| 		 *
 | |
| 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
 | |
| 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
 | |
| 		 * larger than the maximum number of instructions that can be
 | |
| 		 * retired per cycle (4) and then inverting the condition, we
 | |
| 		 * count all cycles that retire 16 or less instructions, which
 | |
| 		 * is every cycle.
 | |
| 		 *
 | |
| 		 * Thereby we gain a PEBS capable cycle counter.
 | |
| 		 */
 | |
| 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
 | |
| 
 | |
| 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
 | |
| 		event->hw.config = alt_config;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pebs_aliases_snb(struct perf_event *event)
 | |
| {
 | |
| 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
 | |
| 		/*
 | |
| 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
 | |
| 		 * (0x003c) so that we can use it with PEBS.
 | |
| 		 *
 | |
| 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
 | |
| 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
 | |
| 		 * (0x01c2), which is a PEBS capable event, to get the same
 | |
| 		 * count.
 | |
| 		 *
 | |
| 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
 | |
| 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
 | |
| 		 * larger than the maximum number of micro-ops that can be
 | |
| 		 * retired per cycle (4) and then inverting the condition, we
 | |
| 		 * count all cycles that retire 16 or less micro-ops, which
 | |
| 		 * is every cycle.
 | |
| 		 *
 | |
| 		 * Thereby we gain a PEBS capable cycle counter.
 | |
| 		 */
 | |
| 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
 | |
| 
 | |
| 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
 | |
| 		event->hw.config = alt_config;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pebs_aliases_precdist(struct perf_event *event)
 | |
| {
 | |
| 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
 | |
| 		/*
 | |
| 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
 | |
| 		 * (0x003c) so that we can use it with PEBS.
 | |
| 		 *
 | |
| 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
 | |
| 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
 | |
| 		 * (0x01c0), which is a PEBS capable event, to get the same
 | |
| 		 * count.
 | |
| 		 *
 | |
| 		 * The PREC_DIST event has special support to minimize sample
 | |
| 		 * shadowing effects. One drawback is that it can be
 | |
| 		 * only programmed on counter 1, but that seems like an
 | |
| 		 * acceptable trade off.
 | |
| 		 */
 | |
| 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
 | |
| 
 | |
| 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
 | |
| 		event->hw.config = alt_config;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pebs_aliases_ivb(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.precise_ip < 3)
 | |
| 		return intel_pebs_aliases_snb(event);
 | |
| 	return intel_pebs_aliases_precdist(event);
 | |
| }
 | |
| 
 | |
| static void intel_pebs_aliases_skl(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.precise_ip < 3)
 | |
| 		return intel_pebs_aliases_core2(event);
 | |
| 	return intel_pebs_aliases_precdist(event);
 | |
| }
 | |
| 
 | |
| static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
 | |
| {
 | |
| 	unsigned long flags = x86_pmu.large_pebs_flags;
 | |
| 
 | |
| 	if (event->attr.use_clockid)
 | |
| 		flags &= ~PERF_SAMPLE_TIME;
 | |
| 	if (!event->attr.exclude_kernel)
 | |
| 		flags &= ~PERF_SAMPLE_REGS_USER;
 | |
| 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
 | |
| 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| static int intel_pmu_bts_config(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_attr *attr = &event->attr;
 | |
| 
 | |
| 	if (unlikely(intel_pmu_has_bts(event))) {
 | |
| 		/* BTS is not supported by this architecture. */
 | |
| 		if (!x86_pmu.bts_active)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		/* BTS is currently only allowed for user-mode. */
 | |
| 		if (!attr->exclude_kernel)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		/* BTS is not allowed for precise events. */
 | |
| 		if (attr->precise_ip)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		/* disallow bts if conflicting events are present */
 | |
| 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		event->destroy = hw_perf_lbr_event_destroy;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int core_pmu_hw_config(struct perf_event *event)
 | |
| {
 | |
| 	int ret = x86_pmu_hw_config(event);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return intel_pmu_bts_config(event);
 | |
| }
 | |
| 
 | |
| #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
 | |
| 					 ((x86_pmu.num_topdown_events - 1) << 8))
 | |
| 
 | |
| static bool is_available_metric_event(struct perf_event *event)
 | |
| {
 | |
| 	return is_metric_event(event) &&
 | |
| 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
 | |
| }
 | |
| 
 | |
| static inline bool is_mem_loads_event(struct perf_event *event)
 | |
| {
 | |
| 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
 | |
| }
 | |
| 
 | |
| static inline bool is_mem_loads_aux_event(struct perf_event *event)
 | |
| {
 | |
| 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
 | |
| }
 | |
| 
 | |
| static inline bool require_mem_loads_aux_event(struct perf_event *event)
 | |
| {
 | |
| 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
 | |
| 		return false;
 | |
| 
 | |
| 	if (is_hybrid())
 | |
| 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
 | |
| {
 | |
| 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
 | |
| 
 | |
| 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
 | |
| }
 | |
| 
 | |
| static int intel_pmu_hw_config(struct perf_event *event)
 | |
| {
 | |
| 	int ret = x86_pmu_hw_config(event);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = intel_pmu_bts_config(event);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (event->attr.precise_ip) {
 | |
| 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
 | |
| 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
 | |
| 			if (!(event->attr.sample_type &
 | |
| 			      ~intel_pmu_large_pebs_flags(event))) {
 | |
| 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
 | |
| 				event->attach_state |= PERF_ATTACH_SCHED_CB;
 | |
| 			}
 | |
| 		}
 | |
| 		if (x86_pmu.pebs_aliases)
 | |
| 			x86_pmu.pebs_aliases(event);
 | |
| 
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
 | |
| 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
 | |
| 	}
 | |
| 
 | |
| 	if (needs_branch_stack(event)) {
 | |
| 		ret = intel_pmu_setup_lbr_filter(event);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		event->attach_state |= PERF_ATTACH_SCHED_CB;
 | |
| 
 | |
| 		/*
 | |
| 		 * BTS is set up earlier in this path, so don't account twice
 | |
| 		 */
 | |
| 		if (!unlikely(intel_pmu_has_bts(event))) {
 | |
| 			/* disallow lbr if conflicting events are present */
 | |
| 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
 | |
| 				return -EBUSY;
 | |
| 
 | |
| 			event->destroy = hw_perf_lbr_event_destroy;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (event->attr.aux_output) {
 | |
| 		if (!event->attr.precise_ip)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
 | |
| 	}
 | |
| 
 | |
| 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
 | |
| 	    (event->attr.type == PERF_TYPE_HW_CACHE))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Config Topdown slots and metric events
 | |
| 	 *
 | |
| 	 * The slots event on Fixed Counter 3 can support sampling,
 | |
| 	 * which will be handled normally in x86_perf_event_update().
 | |
| 	 *
 | |
| 	 * Metric events don't support sampling and require being paired
 | |
| 	 * with a slots event as group leader. When the slots event
 | |
| 	 * is used in a metrics group, it too cannot support sampling.
 | |
| 	 */
 | |
| 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
 | |
| 		if (event->attr.config1 || event->attr.config2)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * The TopDown metrics events and slots event don't
 | |
| 		 * support any filters.
 | |
| 		 */
 | |
| 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (is_available_metric_event(event)) {
 | |
| 			struct perf_event *leader = event->group_leader;
 | |
| 
 | |
| 			/* The metric events don't support sampling. */
 | |
| 			if (is_sampling_event(event))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/* The metric events require a slots group leader. */
 | |
| 			if (!is_slots_event(leader))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/*
 | |
| 			 * The leader/SLOTS must not be a sampling event for
 | |
| 			 * metric use; hardware requires it starts at 0 when used
 | |
| 			 * in conjunction with MSR_PERF_METRICS.
 | |
| 			 */
 | |
| 			if (is_sampling_event(leader))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			event->event_caps |= PERF_EV_CAP_SIBLING;
 | |
| 			/*
 | |
| 			 * Only once we have a METRICs sibling do we
 | |
| 			 * need TopDown magic.
 | |
| 			 */
 | |
| 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
 | |
| 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
 | |
| 	 * doesn't function quite right. As a work-around it needs to always be
 | |
| 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
 | |
| 	 * The actual count of this second event is irrelevant it just needs
 | |
| 	 * to be active to make the first event function correctly.
 | |
| 	 *
 | |
| 	 * In a group, the auxiliary event must be in front of the load latency
 | |
| 	 * event. The rule is to simplify the implementation of the check.
 | |
| 	 * That's because perf cannot have a complete group at the moment.
 | |
| 	 */
 | |
| 	if (require_mem_loads_aux_event(event) &&
 | |
| 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
 | |
| 	    is_mem_loads_event(event)) {
 | |
| 		struct perf_event *leader = event->group_leader;
 | |
| 		struct perf_event *sibling = NULL;
 | |
| 
 | |
| 		if (!is_mem_loads_aux_event(leader)) {
 | |
| 			for_each_sibling_event(sibling, leader) {
 | |
| 				if (is_mem_loads_aux_event(sibling))
 | |
| 					break;
 | |
| 			}
 | |
| 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
 | |
| 				return -ENODATA;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (x86_pmu.version < 3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = perf_allow_cpu(&event->attr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
 | |
| {
 | |
| 	if (x86_pmu.guest_get_msrs)
 | |
| 		return x86_pmu.guest_get_msrs(nr);
 | |
| 	*nr = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
 | |
| 
 | |
| static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
 | |
| 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
 | |
| 
 | |
| 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
 | |
| 	arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
 | |
| 	arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
 | |
| 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
 | |
| 		arr[0].guest &= ~cpuc->pebs_enabled;
 | |
| 	else
 | |
| 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
 | |
| 	*nr = 1;
 | |
| 
 | |
| 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
 | |
| 		/*
 | |
| 		 * If PMU counter has PEBS enabled it is not enough to
 | |
| 		 * disable counter on a guest entry since PEBS memory
 | |
| 		 * write can overshoot guest entry and corrupt guest
 | |
| 		 * memory. Disabling PEBS solves the problem.
 | |
| 		 *
 | |
| 		 * Don't do this if the CPU already enforces it.
 | |
| 		 */
 | |
| 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
 | |
| 		arr[1].host = cpuc->pebs_enabled;
 | |
| 		arr[1].guest = 0;
 | |
| 		*nr = 2;
 | |
| 	}
 | |
| 
 | |
| 	return arr;
 | |
| }
 | |
| 
 | |
| static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
 | |
| 	int idx;
 | |
| 
 | |
| 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
 | |
| 		struct perf_event *event = cpuc->events[idx];
 | |
| 
 | |
| 		arr[idx].msr = x86_pmu_config_addr(idx);
 | |
| 		arr[idx].host = arr[idx].guest = 0;
 | |
| 
 | |
| 		if (!test_bit(idx, cpuc->active_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		arr[idx].host = arr[idx].guest =
 | |
| 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
 | |
| 
 | |
| 		if (event->attr.exclude_host)
 | |
| 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 | |
| 		else if (event->attr.exclude_guest)
 | |
| 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 | |
| 	}
 | |
| 
 | |
| 	*nr = x86_pmu.num_counters;
 | |
| 	return arr;
 | |
| }
 | |
| 
 | |
| static void core_pmu_enable_event(struct perf_event *event)
 | |
| {
 | |
| 	if (!event->attr.exclude_host)
 | |
| 		x86_pmu_enable_event(event);
 | |
| }
 | |
| 
 | |
| static void core_pmu_enable_all(int added)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	int idx;
 | |
| 
 | |
| 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 | |
| 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 | |
| 
 | |
| 		if (!test_bit(idx, cpuc->active_mask) ||
 | |
| 				cpuc->events[idx]->attr.exclude_host)
 | |
| 			continue;
 | |
| 
 | |
| 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hsw_hw_config(struct perf_event *event)
 | |
| {
 | |
| 	int ret = intel_pmu_hw_config(event);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
 | |
| 		return 0;
 | |
| 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
 | |
| 
 | |
| 	/*
 | |
| 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
 | |
| 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
 | |
| 	 * this combination.
 | |
| 	 */
 | |
| 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
 | |
| 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
 | |
| 	      event->attr.precise_ip > 0))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (event_is_checkpointed(event)) {
 | |
| 		/*
 | |
| 		 * Sampling of checkpointed events can cause situations where
 | |
| 		 * the CPU constantly aborts because of a overflow, which is
 | |
| 		 * then checkpointed back and ignored. Forbid checkpointing
 | |
| 		 * for sampling.
 | |
| 		 *
 | |
| 		 * But still allow a long sampling period, so that perf stat
 | |
| 		 * from KVM works.
 | |
| 		 */
 | |
| 		if (event->attr.sample_period > 0 &&
 | |
| 		    event->attr.sample_period < 0x7fffffff)
 | |
| 			return -EOPNOTSUPP;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct event_constraint counter0_constraint =
 | |
| 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
 | |
| 
 | |
| static struct event_constraint counter1_constraint =
 | |
| 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
 | |
| 
 | |
| static struct event_constraint counter0_1_constraint =
 | |
| 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
 | |
| 
 | |
| static struct event_constraint counter2_constraint =
 | |
| 			EVENT_CONSTRAINT(0, 0x4, 0);
 | |
| 
 | |
| static struct event_constraint fixed0_constraint =
 | |
| 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
 | |
| 
 | |
| static struct event_constraint fixed0_counter0_constraint =
 | |
| 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
 | |
| 
 | |
| static struct event_constraint fixed0_counter0_1_constraint =
 | |
| 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
 | |
| 
 | |
| static struct event_constraint counters_1_7_constraint =
 | |
| 			INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
 | |
| 
 | |
| static struct event_constraint *
 | |
| hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	c = intel_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
 | |
| 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
 | |
| 		if (c->idxmsk64 & (1U << 2))
 | |
| 			return &counter2_constraint;
 | |
| 		return &emptyconstraint;
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * Fixed counter 0 has less skid.
 | |
| 	 * Force instruction:ppp in Fixed counter 0
 | |
| 	 */
 | |
| 	if ((event->attr.precise_ip == 3) &&
 | |
| 	    constraint_match(&fixed0_constraint, event->hw.config))
 | |
| 		return &fixed0_constraint;
 | |
| 
 | |
| 	return hsw_get_event_constraints(cpuc, idx, event);
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	c = icl_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	/*
 | |
| 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
 | |
| 	 * is only supported on the GP counter 0. If a :ppp event which is not
 | |
| 	 * available on the GP counter 0, error out.
 | |
| 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
 | |
| 	 */
 | |
| 	if ((event->attr.precise_ip == 3) &&
 | |
| 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
 | |
| 		if (c->idxmsk64 & BIT_ULL(0))
 | |
| 			return &counter0_constraint;
 | |
| 
 | |
| 		return &emptyconstraint;
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
 | |
| 	if (event->attr.precise_ip == 3)
 | |
| 		return &counter0_constraint;
 | |
| 
 | |
| 	c = intel_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	c = intel_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	/*
 | |
| 	 * :ppp means to do reduced skid PEBS,
 | |
| 	 * which is available on PMC0 and fixed counter 0.
 | |
| 	 */
 | |
| 	if (event->attr.precise_ip == 3) {
 | |
| 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
 | |
| 		if (constraint_match(&fixed0_constraint, event->hw.config))
 | |
| 			return &fixed0_counter0_constraint;
 | |
| 
 | |
| 		return &counter0_constraint;
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static bool allow_tsx_force_abort = true;
 | |
| 
 | |
| static struct event_constraint *
 | |
| tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Without TFA we must not use PMC3.
 | |
| 	 */
 | |
| 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
 | |
| 		c = dyn_constraint(cpuc, c, idx);
 | |
| 		c->idxmsk64 &= ~(1ULL << 3);
 | |
| 		c->weight--;
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
 | |
| 
 | |
| 	if (pmu->cpu_type == hybrid_big)
 | |
| 		return spr_get_event_constraints(cpuc, idx, event);
 | |
| 	else if (pmu->cpu_type == hybrid_small)
 | |
| 		return tnt_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	WARN_ON(1);
 | |
| 	return &emptyconstraint;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	c = intel_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	/*
 | |
| 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
 | |
| 	 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
 | |
| 	 * If a :ppp event which is not available on the above eligible counters,
 | |
| 	 * error out.
 | |
| 	 */
 | |
| 	if (event->attr.precise_ip == 3) {
 | |
| 		/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
 | |
| 		if (constraint_match(&fixed0_constraint, event->hw.config))
 | |
| 			return &fixed0_counter0_1_constraint;
 | |
| 
 | |
| 		switch (c->idxmsk64 & 0x3ull) {
 | |
| 		case 0x1:
 | |
| 			return &counter0_constraint;
 | |
| 		case 0x2:
 | |
| 			return &counter1_constraint;
 | |
| 		case 0x3:
 | |
| 			return &counter0_1_constraint;
 | |
| 		}
 | |
| 		return &emptyconstraint;
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	c = spr_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	/* The Retire Latency is not supported by the fixed counter 0. */
 | |
| 	if (event->attr.precise_ip &&
 | |
| 	    (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
 | |
| 	    constraint_match(&fixed0_constraint, event->hw.config)) {
 | |
| 		/*
 | |
| 		 * The Instruction PDIR is only available
 | |
| 		 * on the fixed counter 0. Error out for this case.
 | |
| 		 */
 | |
| 		if (event->attr.precise_ip == 3)
 | |
| 			return &emptyconstraint;
 | |
| 		return &counters_1_7_constraint;
 | |
| 	}
 | |
| 
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static struct event_constraint *
 | |
| mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
 | |
| 			  struct perf_event *event)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
 | |
| 
 | |
| 	if (pmu->cpu_type == hybrid_big)
 | |
| 		return rwc_get_event_constraints(cpuc, idx, event);
 | |
| 	if (pmu->cpu_type == hybrid_small)
 | |
| 		return cmt_get_event_constraints(cpuc, idx, event);
 | |
| 
 | |
| 	WARN_ON(1);
 | |
| 	return &emptyconstraint;
 | |
| }
 | |
| 
 | |
| static int adl_hw_config(struct perf_event *event)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
 | |
| 
 | |
| 	if (pmu->cpu_type == hybrid_big)
 | |
| 		return hsw_hw_config(event);
 | |
| 	else if (pmu->cpu_type == hybrid_small)
 | |
| 		return intel_pmu_hw_config(event);
 | |
| 
 | |
| 	WARN_ON(1);
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static u8 adl_get_hybrid_cpu_type(void)
 | |
| {
 | |
| 	return hybrid_big;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Broadwell:
 | |
|  *
 | |
|  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
 | |
|  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
 | |
|  * the two to enforce a minimum period of 128 (the smallest value that has bits
 | |
|  * 0-5 cleared and >= 100).
 | |
|  *
 | |
|  * Because of how the code in x86_perf_event_set_period() works, the truncation
 | |
|  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
 | |
|  * to make up for the 'lost' events due to carrying the 'error' in period_left.
 | |
|  *
 | |
|  * Therefore the effective (average) period matches the requested period,
 | |
|  * despite coarser hardware granularity.
 | |
|  */
 | |
| static u64 bdw_limit_period(struct perf_event *event, u64 left)
 | |
| {
 | |
| 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
 | |
| 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
 | |
| 		if (left < 128)
 | |
| 			left = 128;
 | |
| 		left &= ~0x3fULL;
 | |
| 	}
 | |
| 	return left;
 | |
| }
 | |
| 
 | |
| static u64 nhm_limit_period(struct perf_event *event, u64 left)
 | |
| {
 | |
| 	return max(left, 32ULL);
 | |
| }
 | |
| 
 | |
| static u64 spr_limit_period(struct perf_event *event, u64 left)
 | |
| {
 | |
| 	if (event->attr.precise_ip == 3)
 | |
| 		return max(left, 128ULL);
 | |
| 
 | |
| 	return left;
 | |
| }
 | |
| 
 | |
| PMU_FORMAT_ATTR(event,	"config:0-7"	);
 | |
| PMU_FORMAT_ATTR(umask,	"config:8-15"	);
 | |
| PMU_FORMAT_ATTR(edge,	"config:18"	);
 | |
| PMU_FORMAT_ATTR(pc,	"config:19"	);
 | |
| PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
 | |
| PMU_FORMAT_ATTR(inv,	"config:23"	);
 | |
| PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
 | |
| PMU_FORMAT_ATTR(in_tx,  "config:32");
 | |
| PMU_FORMAT_ATTR(in_tx_cp, "config:33");
 | |
| 
 | |
| static struct attribute *intel_arch_formats_attr[] = {
 | |
| 	&format_attr_event.attr,
 | |
| 	&format_attr_umask.attr,
 | |
| 	&format_attr_edge.attr,
 | |
| 	&format_attr_pc.attr,
 | |
| 	&format_attr_inv.attr,
 | |
| 	&format_attr_cmask.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| ssize_t intel_event_sysfs_show(char *page, u64 config)
 | |
| {
 | |
| 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
 | |
| 
 | |
| 	return x86_event_sysfs_show(page, config, event);
 | |
| }
 | |
| 
 | |
| static struct intel_shared_regs *allocate_shared_regs(int cpu)
 | |
| {
 | |
| 	struct intel_shared_regs *regs;
 | |
| 	int i;
 | |
| 
 | |
| 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
 | |
| 			    GFP_KERNEL, cpu_to_node(cpu));
 | |
| 	if (regs) {
 | |
| 		/*
 | |
| 		 * initialize the locks to keep lockdep happy
 | |
| 		 */
 | |
| 		for (i = 0; i < EXTRA_REG_MAX; i++)
 | |
| 			raw_spin_lock_init(®s->regs[i].lock);
 | |
| 
 | |
| 		regs->core_id = -1;
 | |
| 	}
 | |
| 	return regs;
 | |
| }
 | |
| 
 | |
| static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
 | |
| {
 | |
| 	struct intel_excl_cntrs *c;
 | |
| 
 | |
| 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
 | |
| 			 GFP_KERNEL, cpu_to_node(cpu));
 | |
| 	if (c) {
 | |
| 		raw_spin_lock_init(&c->lock);
 | |
| 		c->core_id = -1;
 | |
| 	}
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| 
 | |
| int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
 | |
| {
 | |
| 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
 | |
| 
 | |
| 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
 | |
| 		cpuc->shared_regs = allocate_shared_regs(cpu);
 | |
| 		if (!cpuc->shared_regs)
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
 | |
| 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
 | |
| 
 | |
| 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
 | |
| 		if (!cpuc->constraint_list)
 | |
| 			goto err_shared_regs;
 | |
| 	}
 | |
| 
 | |
| 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
 | |
| 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
 | |
| 		if (!cpuc->excl_cntrs)
 | |
| 			goto err_constraint_list;
 | |
| 
 | |
| 		cpuc->excl_thread_id = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_constraint_list:
 | |
| 	kfree(cpuc->constraint_list);
 | |
| 	cpuc->constraint_list = NULL;
 | |
| 
 | |
| err_shared_regs:
 | |
| 	kfree(cpuc->shared_regs);
 | |
| 	cpuc->shared_regs = NULL;
 | |
| 
 | |
| err:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int intel_pmu_cpu_prepare(int cpu)
 | |
| {
 | |
| 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
 | |
| }
 | |
| 
 | |
| static void flip_smm_bit(void *data)
 | |
| {
 | |
| 	unsigned long set = *(unsigned long *)data;
 | |
| 
 | |
| 	if (set > 0) {
 | |
| 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
 | |
| 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
 | |
| 	} else {
 | |
| 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
 | |
| 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pmu_check_num_counters(int *num_counters,
 | |
| 					 int *num_counters_fixed,
 | |
| 					 u64 *intel_ctrl, u64 fixed_mask);
 | |
| 
 | |
| static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
 | |
| {
 | |
| 	unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
 | |
| 	unsigned int eax, ebx, ecx, edx;
 | |
| 
 | |
| 	if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
 | |
| 		cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
 | |
| 			    &eax, &ebx, &ecx, &edx);
 | |
| 		pmu->num_counters = fls(eax);
 | |
| 		pmu->num_counters_fixed = fls(ebx);
 | |
| 		intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
 | |
| 					     &pmu->intel_ctrl, ebx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool init_hybrid_pmu(int cpu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
 | |
| 	u8 cpu_type = get_this_hybrid_cpu_type();
 | |
| 	struct x86_hybrid_pmu *pmu = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
 | |
| 		cpu_type = x86_pmu.get_hybrid_cpu_type();
 | |
| 
 | |
| 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
 | |
| 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
 | |
| 			pmu = &x86_pmu.hybrid_pmu[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
 | |
| 		cpuc->pmu = NULL;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Only check and dump the PMU information for the first CPU */
 | |
| 	if (!cpumask_empty(&pmu->supported_cpus))
 | |
| 		goto end;
 | |
| 
 | |
| 	if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
 | |
| 		update_pmu_cap(pmu);
 | |
| 
 | |
| 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
 | |
| 		return false;
 | |
| 
 | |
| 	pr_info("%s PMU driver: ", pmu->name);
 | |
| 
 | |
| 	if (pmu->intel_cap.pebs_output_pt_available)
 | |
| 		pr_cont("PEBS-via-PT ");
 | |
| 
 | |
| 	pr_cont("\n");
 | |
| 
 | |
| 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
 | |
| 			     pmu->intel_ctrl);
 | |
| 
 | |
| end:
 | |
| 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
 | |
| 	cpuc->pmu = &pmu->pmu;
 | |
| 
 | |
| 	x86_pmu_update_cpu_context(&pmu->pmu, cpu);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void intel_pmu_cpu_starting(int cpu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
 | |
| 	int core_id = topology_core_id(cpu);
 | |
| 	int i;
 | |
| 
 | |
| 	if (is_hybrid() && !init_hybrid_pmu(cpu))
 | |
| 		return;
 | |
| 
 | |
| 	init_debug_store_on_cpu(cpu);
 | |
| 	/*
 | |
| 	 * Deal with CPUs that don't clear their LBRs on power-up.
 | |
| 	 */
 | |
| 	intel_pmu_lbr_reset();
 | |
| 
 | |
| 	cpuc->lbr_sel = NULL;
 | |
| 
 | |
| 	if (x86_pmu.flags & PMU_FL_TFA) {
 | |
| 		WARN_ON_ONCE(cpuc->tfa_shadow);
 | |
| 		cpuc->tfa_shadow = ~0ULL;
 | |
| 		intel_set_tfa(cpuc, false);
 | |
| 	}
 | |
| 
 | |
| 	if (x86_pmu.version > 1)
 | |
| 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable perf metrics if any added CPU doesn't support it.
 | |
| 	 *
 | |
| 	 * Turn off the check for a hybrid architecture, because the
 | |
| 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
 | |
| 	 * the architecture features. The perf metrics is a model-specific
 | |
| 	 * feature for now. The corresponding bit should always be 0 on
 | |
| 	 * a hybrid platform, e.g., Alder Lake.
 | |
| 	 */
 | |
| 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
 | |
| 		union perf_capabilities perf_cap;
 | |
| 
 | |
| 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
 | |
| 		if (!perf_cap.perf_metrics) {
 | |
| 			x86_pmu.intel_cap.perf_metrics = 0;
 | |
| 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!cpuc->shared_regs)
 | |
| 		return;
 | |
| 
 | |
| 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
 | |
| 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
 | |
| 			struct intel_shared_regs *pc;
 | |
| 
 | |
| 			pc = per_cpu(cpu_hw_events, i).shared_regs;
 | |
| 			if (pc && pc->core_id == core_id) {
 | |
| 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
 | |
| 				cpuc->shared_regs = pc;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		cpuc->shared_regs->core_id = core_id;
 | |
| 		cpuc->shared_regs->refcnt++;
 | |
| 	}
 | |
| 
 | |
| 	if (x86_pmu.lbr_sel_map)
 | |
| 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
 | |
| 
 | |
| 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
 | |
| 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
 | |
| 			struct cpu_hw_events *sibling;
 | |
| 			struct intel_excl_cntrs *c;
 | |
| 
 | |
| 			sibling = &per_cpu(cpu_hw_events, i);
 | |
| 			c = sibling->excl_cntrs;
 | |
| 			if (c && c->core_id == core_id) {
 | |
| 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
 | |
| 				cpuc->excl_cntrs = c;
 | |
| 				if (!sibling->excl_thread_id)
 | |
| 					cpuc->excl_thread_id = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		cpuc->excl_cntrs->core_id = core_id;
 | |
| 		cpuc->excl_cntrs->refcnt++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_excl_cntrs(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	struct intel_excl_cntrs *c;
 | |
| 
 | |
| 	c = cpuc->excl_cntrs;
 | |
| 	if (c) {
 | |
| 		if (c->core_id == -1 || --c->refcnt == 0)
 | |
| 			kfree(c);
 | |
| 		cpuc->excl_cntrs = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(cpuc->constraint_list);
 | |
| 	cpuc->constraint_list = NULL;
 | |
| }
 | |
| 
 | |
| static void intel_pmu_cpu_dying(int cpu)
 | |
| {
 | |
| 	fini_debug_store_on_cpu(cpu);
 | |
| }
 | |
| 
 | |
| void intel_cpuc_finish(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	struct intel_shared_regs *pc;
 | |
| 
 | |
| 	pc = cpuc->shared_regs;
 | |
| 	if (pc) {
 | |
| 		if (pc->core_id == -1 || --pc->refcnt == 0)
 | |
| 			kfree(pc);
 | |
| 		cpuc->shared_regs = NULL;
 | |
| 	}
 | |
| 
 | |
| 	free_excl_cntrs(cpuc);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_cpu_dead(int cpu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
 | |
| 
 | |
| 	intel_cpuc_finish(cpuc);
 | |
| 
 | |
| 	if (is_hybrid() && cpuc->pmu)
 | |
| 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_sched_task(struct perf_event_context *ctx,
 | |
| 				 bool sched_in)
 | |
| {
 | |
| 	intel_pmu_pebs_sched_task(ctx, sched_in);
 | |
| 	intel_pmu_lbr_sched_task(ctx, sched_in);
 | |
| }
 | |
| 
 | |
| static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
 | |
| 				    struct perf_event_context *next)
 | |
| {
 | |
| 	intel_pmu_lbr_swap_task_ctx(prev, next);
 | |
| }
 | |
| 
 | |
| static int intel_pmu_check_period(struct perf_event *event, u64 value)
 | |
| {
 | |
| 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
 | |
| }
 | |
| 
 | |
| static int intel_pmu_aux_output_match(struct perf_event *event)
 | |
| {
 | |
| 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
 | |
| 		return 0;
 | |
| 
 | |
| 	return is_intel_pt_event(event);
 | |
| }
 | |
| 
 | |
| static int intel_pmu_filter_match(struct perf_event *event)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 
 | |
| 	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
 | |
| }
 | |
| 
 | |
| PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
 | |
| 
 | |
| PMU_FORMAT_ATTR(ldlat, "config1:0-15");
 | |
| 
 | |
| PMU_FORMAT_ATTR(frontend, "config1:0-23");
 | |
| 
 | |
| static struct attribute *intel_arch3_formats_attr[] = {
 | |
| 	&format_attr_event.attr,
 | |
| 	&format_attr_umask.attr,
 | |
| 	&format_attr_edge.attr,
 | |
| 	&format_attr_pc.attr,
 | |
| 	&format_attr_any.attr,
 | |
| 	&format_attr_inv.attr,
 | |
| 	&format_attr_cmask.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *hsw_format_attr[] = {
 | |
| 	&format_attr_in_tx.attr,
 | |
| 	&format_attr_in_tx_cp.attr,
 | |
| 	&format_attr_offcore_rsp.attr,
 | |
| 	&format_attr_ldlat.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute *nhm_format_attr[] = {
 | |
| 	&format_attr_offcore_rsp.attr,
 | |
| 	&format_attr_ldlat.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute *slm_format_attr[] = {
 | |
| 	&format_attr_offcore_rsp.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute *skl_format_attr[] = {
 | |
| 	&format_attr_frontend.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static __initconst const struct x86_pmu core_pmu = {
 | |
| 	.name			= "core",
 | |
| 	.handle_irq		= x86_pmu_handle_irq,
 | |
| 	.disable_all		= x86_pmu_disable_all,
 | |
| 	.enable_all		= core_pmu_enable_all,
 | |
| 	.enable			= core_pmu_enable_event,
 | |
| 	.disable		= x86_pmu_disable_event,
 | |
| 	.hw_config		= core_pmu_hw_config,
 | |
| 	.schedule_events	= x86_schedule_events,
 | |
| 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
 | |
| 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
 | |
| 	.event_map		= intel_pmu_event_map,
 | |
| 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
 | |
| 	.apic			= 1,
 | |
| 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
 | |
| 	 * so we install an artificial 1<<31 period regardless of
 | |
| 	 * the generic event period:
 | |
| 	 */
 | |
| 	.max_period		= (1ULL<<31) - 1,
 | |
| 	.get_event_constraints	= intel_get_event_constraints,
 | |
| 	.put_event_constraints	= intel_put_event_constraints,
 | |
| 	.event_constraints	= intel_core_event_constraints,
 | |
| 	.guest_get_msrs		= core_guest_get_msrs,
 | |
| 	.format_attrs		= intel_arch_formats_attr,
 | |
| 	.events_sysfs_show	= intel_event_sysfs_show,
 | |
| 
 | |
| 	/*
 | |
| 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
 | |
| 	 * together with PMU version 1 and thus be using core_pmu with
 | |
| 	 * shared_regs. We need following callbacks here to allocate
 | |
| 	 * it properly.
 | |
| 	 */
 | |
| 	.cpu_prepare		= intel_pmu_cpu_prepare,
 | |
| 	.cpu_starting		= intel_pmu_cpu_starting,
 | |
| 	.cpu_dying		= intel_pmu_cpu_dying,
 | |
| 	.cpu_dead		= intel_pmu_cpu_dead,
 | |
| 
 | |
| 	.check_period		= intel_pmu_check_period,
 | |
| 
 | |
| 	.lbr_reset		= intel_pmu_lbr_reset_64,
 | |
| 	.lbr_read		= intel_pmu_lbr_read_64,
 | |
| 	.lbr_save		= intel_pmu_lbr_save,
 | |
| 	.lbr_restore		= intel_pmu_lbr_restore,
 | |
| };
 | |
| 
 | |
| static __initconst const struct x86_pmu intel_pmu = {
 | |
| 	.name			= "Intel",
 | |
| 	.handle_irq		= intel_pmu_handle_irq,
 | |
| 	.disable_all		= intel_pmu_disable_all,
 | |
| 	.enable_all		= intel_pmu_enable_all,
 | |
| 	.enable			= intel_pmu_enable_event,
 | |
| 	.disable		= intel_pmu_disable_event,
 | |
| 	.add			= intel_pmu_add_event,
 | |
| 	.del			= intel_pmu_del_event,
 | |
| 	.read			= intel_pmu_read_event,
 | |
| 	.hw_config		= intel_pmu_hw_config,
 | |
| 	.schedule_events	= x86_schedule_events,
 | |
| 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
 | |
| 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
 | |
| 	.event_map		= intel_pmu_event_map,
 | |
| 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
 | |
| 	.apic			= 1,
 | |
| 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
 | |
| 	/*
 | |
| 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
 | |
| 	 * so we install an artificial 1<<31 period regardless of
 | |
| 	 * the generic event period:
 | |
| 	 */
 | |
| 	.max_period		= (1ULL << 31) - 1,
 | |
| 	.get_event_constraints	= intel_get_event_constraints,
 | |
| 	.put_event_constraints	= intel_put_event_constraints,
 | |
| 	.pebs_aliases		= intel_pebs_aliases_core2,
 | |
| 
 | |
| 	.format_attrs		= intel_arch3_formats_attr,
 | |
| 	.events_sysfs_show	= intel_event_sysfs_show,
 | |
| 
 | |
| 	.cpu_prepare		= intel_pmu_cpu_prepare,
 | |
| 	.cpu_starting		= intel_pmu_cpu_starting,
 | |
| 	.cpu_dying		= intel_pmu_cpu_dying,
 | |
| 	.cpu_dead		= intel_pmu_cpu_dead,
 | |
| 
 | |
| 	.guest_get_msrs		= intel_guest_get_msrs,
 | |
| 	.sched_task		= intel_pmu_sched_task,
 | |
| 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
 | |
| 
 | |
| 	.check_period		= intel_pmu_check_period,
 | |
| 
 | |
| 	.aux_output_match	= intel_pmu_aux_output_match,
 | |
| 
 | |
| 	.lbr_reset		= intel_pmu_lbr_reset_64,
 | |
| 	.lbr_read		= intel_pmu_lbr_read_64,
 | |
| 	.lbr_save		= intel_pmu_lbr_save,
 | |
| 	.lbr_restore		= intel_pmu_lbr_restore,
 | |
| };
 | |
| 
 | |
| static __init void intel_clovertown_quirk(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * PEBS is unreliable due to:
 | |
| 	 *
 | |
| 	 *   AJ67  - PEBS may experience CPL leaks
 | |
| 	 *   AJ68  - PEBS PMI may be delayed by one event
 | |
| 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
 | |
| 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
 | |
| 	 *
 | |
| 	 * AJ67 could be worked around by restricting the OS/USR flags.
 | |
| 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
 | |
| 	 *
 | |
| 	 * AJ106 could possibly be worked around by not allowing LBR
 | |
| 	 *       usage from PEBS, including the fixup.
 | |
| 	 * AJ68  could possibly be worked around by always programming
 | |
| 	 *	 a pebs_event_reset[0] value and coping with the lost events.
 | |
| 	 *
 | |
| 	 * But taken together it might just make sense to not enable PEBS on
 | |
| 	 * these chips.
 | |
| 	 */
 | |
| 	pr_warn("PEBS disabled due to CPU errata\n");
 | |
| 	x86_pmu.pebs = 0;
 | |
| 	x86_pmu.pebs_constraints = NULL;
 | |
| }
 | |
| 
 | |
| static const struct x86_cpu_desc isolation_ucodes[] = {
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		11, 0x00000000),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static void intel_check_pebs_isolation(void)
 | |
| {
 | |
| 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
 | |
| }
 | |
| 
 | |
| static __init void intel_pebs_isolation_quirk(void)
 | |
| {
 | |
| 	WARN_ON_ONCE(x86_pmu.check_microcode);
 | |
| 	x86_pmu.check_microcode = intel_check_pebs_isolation;
 | |
| 	intel_check_pebs_isolation();
 | |
| }
 | |
| 
 | |
| static const struct x86_cpu_desc pebs_ucodes[] = {
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
 | |
| 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static bool intel_snb_pebs_broken(void)
 | |
| {
 | |
| 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
 | |
| }
 | |
| 
 | |
| static void intel_snb_check_microcode(void)
 | |
| {
 | |
| 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Serialized by the microcode lock..
 | |
| 	 */
 | |
| 	if (x86_pmu.pebs_broken) {
 | |
| 		pr_info("PEBS enabled due to microcode update\n");
 | |
| 		x86_pmu.pebs_broken = 0;
 | |
| 	} else {
 | |
| 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
 | |
| 		x86_pmu.pebs_broken = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool is_lbr_from(unsigned long msr)
 | |
| {
 | |
| 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
 | |
| 
 | |
| 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Under certain circumstances, access certain MSR may cause #GP.
 | |
|  * The function tests if the input MSR can be safely accessed.
 | |
|  */
 | |
| static bool check_msr(unsigned long msr, u64 mask)
 | |
| {
 | |
| 	u64 val_old, val_new, val_tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable the check for real HW, so we don't
 | |
| 	 * mess with potentionaly enabled registers:
 | |
| 	 */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the current value, change it and read it back to see if it
 | |
| 	 * matches, this is needed to detect certain hardware emulators
 | |
| 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 | |
| 	 */
 | |
| 	if (rdmsrl_safe(msr, &val_old))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only change the bits which can be updated by wrmsrl.
 | |
| 	 */
 | |
| 	val_tmp = val_old ^ mask;
 | |
| 
 | |
| 	if (is_lbr_from(msr))
 | |
| 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
 | |
| 
 | |
| 	if (wrmsrl_safe(msr, val_tmp) ||
 | |
| 	    rdmsrl_safe(msr, &val_new))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
 | |
| 	 * should equal rdmsrl()'s even with the quirk.
 | |
| 	 */
 | |
| 	if (val_new != val_tmp)
 | |
| 		return false;
 | |
| 
 | |
| 	if (is_lbr_from(msr))
 | |
| 		val_old = lbr_from_signext_quirk_wr(val_old);
 | |
| 
 | |
| 	/* Here it's sure that the MSR can be safely accessed.
 | |
| 	 * Restore the old value and return.
 | |
| 	 */
 | |
| 	wrmsrl(msr, val_old);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static __init void intel_sandybridge_quirk(void)
 | |
| {
 | |
| 	x86_pmu.check_microcode = intel_snb_check_microcode;
 | |
| 	cpus_read_lock();
 | |
| 	intel_snb_check_microcode();
 | |
| 	cpus_read_unlock();
 | |
| }
 | |
| 
 | |
| static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
 | |
| 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
 | |
| 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
 | |
| 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
 | |
| 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
 | |
| 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
 | |
| 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
 | |
| 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
 | |
| };
 | |
| 
 | |
| static __init void intel_arch_events_quirk(void)
 | |
| {
 | |
| 	int bit;
 | |
| 
 | |
| 	/* disable event that reported as not presend by cpuid */
 | |
| 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
 | |
| 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
 | |
| 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
 | |
| 			intel_arch_events_map[bit].name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __init void intel_nehalem_quirk(void)
 | |
| {
 | |
| 	union cpuid10_ebx ebx;
 | |
| 
 | |
| 	ebx.full = x86_pmu.events_maskl;
 | |
| 	if (ebx.split.no_branch_misses_retired) {
 | |
| 		/*
 | |
| 		 * Erratum AAJ80 detected, we work it around by using
 | |
| 		 * the BR_MISP_EXEC.ANY event. This will over-count
 | |
| 		 * branch-misses, but it's still much better than the
 | |
| 		 * architectural event which is often completely bogus:
 | |
| 		 */
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
 | |
| 		ebx.split.no_branch_misses_retired = 0;
 | |
| 		x86_pmu.events_maskl = ebx.full;
 | |
| 		pr_info("CPU erratum AAJ80 worked around\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * enable software workaround for errata:
 | |
|  * SNB: BJ122
 | |
|  * IVB: BV98
 | |
|  * HSW: HSD29
 | |
|  *
 | |
|  * Only needed when HT is enabled. However detecting
 | |
|  * if HT is enabled is difficult (model specific). So instead,
 | |
|  * we enable the workaround in the early boot, and verify if
 | |
|  * it is needed in a later initcall phase once we have valid
 | |
|  * topology information to check if HT is actually enabled
 | |
|  */
 | |
| static __init void intel_ht_bug(void)
 | |
| {
 | |
| 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
 | |
| 
 | |
| 	x86_pmu.start_scheduling = intel_start_scheduling;
 | |
| 	x86_pmu.commit_scheduling = intel_commit_scheduling;
 | |
| 	x86_pmu.stop_scheduling = intel_stop_scheduling;
 | |
| }
 | |
| 
 | |
| EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
 | |
| EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
 | |
| 
 | |
| /* Haswell special events */
 | |
| EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
 | |
| EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
 | |
| EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
 | |
| EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
 | |
| EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
 | |
| EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
 | |
| EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
 | |
| EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
 | |
| EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
 | |
| EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
 | |
| EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
 | |
| EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
 | |
| 
 | |
| static struct attribute *hsw_events_attrs[] = {
 | |
| 	EVENT_PTR(td_slots_issued),
 | |
| 	EVENT_PTR(td_slots_retired),
 | |
| 	EVENT_PTR(td_fetch_bubbles),
 | |
| 	EVENT_PTR(td_total_slots),
 | |
| 	EVENT_PTR(td_total_slots_scale),
 | |
| 	EVENT_PTR(td_recovery_bubbles),
 | |
| 	EVENT_PTR(td_recovery_bubbles_scale),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute *hsw_mem_events_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_hsw),
 | |
| 	EVENT_PTR(mem_st_hsw),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *hsw_tsx_events_attrs[] = {
 | |
| 	EVENT_PTR(tx_start),
 | |
| 	EVENT_PTR(tx_commit),
 | |
| 	EVENT_PTR(tx_abort),
 | |
| 	EVENT_PTR(tx_capacity),
 | |
| 	EVENT_PTR(tx_conflict),
 | |
| 	EVENT_PTR(el_start),
 | |
| 	EVENT_PTR(el_commit),
 | |
| 	EVENT_PTR(el_abort),
 | |
| 	EVENT_PTR(el_capacity),
 | |
| 	EVENT_PTR(el_conflict),
 | |
| 	EVENT_PTR(cycles_t),
 | |
| 	EVENT_PTR(cycles_ct),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
 | |
| EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
 | |
| EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
 | |
| EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
 | |
| 
 | |
| static struct attribute *icl_events_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_hsw),
 | |
| 	EVENT_PTR(mem_st_hsw),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *icl_td_events_attrs[] = {
 | |
| 	EVENT_PTR(slots),
 | |
| 	EVENT_PTR(td_retiring),
 | |
| 	EVENT_PTR(td_bad_spec),
 | |
| 	EVENT_PTR(td_fe_bound),
 | |
| 	EVENT_PTR(td_be_bound),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *icl_tsx_events_attrs[] = {
 | |
| 	EVENT_PTR(tx_start),
 | |
| 	EVENT_PTR(tx_abort),
 | |
| 	EVENT_PTR(tx_commit),
 | |
| 	EVENT_PTR(tx_capacity_read),
 | |
| 	EVENT_PTR(tx_capacity_write),
 | |
| 	EVENT_PTR(tx_conflict),
 | |
| 	EVENT_PTR(el_start),
 | |
| 	EVENT_PTR(el_abort),
 | |
| 	EVENT_PTR(el_commit),
 | |
| 	EVENT_PTR(el_capacity_read),
 | |
| 	EVENT_PTR(el_capacity_write),
 | |
| 	EVENT_PTR(el_conflict),
 | |
| 	EVENT_PTR(cycles_t),
 | |
| 	EVENT_PTR(cycles_ct),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| 
 | |
| EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
 | |
| EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
 | |
| 
 | |
| static struct attribute *spr_events_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_hsw),
 | |
| 	EVENT_PTR(mem_st_spr),
 | |
| 	EVENT_PTR(mem_ld_aux),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *spr_td_events_attrs[] = {
 | |
| 	EVENT_PTR(slots),
 | |
| 	EVENT_PTR(td_retiring),
 | |
| 	EVENT_PTR(td_bad_spec),
 | |
| 	EVENT_PTR(td_fe_bound),
 | |
| 	EVENT_PTR(td_be_bound),
 | |
| 	EVENT_PTR(td_heavy_ops),
 | |
| 	EVENT_PTR(td_br_mispredict),
 | |
| 	EVENT_PTR(td_fetch_lat),
 | |
| 	EVENT_PTR(td_mem_bound),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *spr_tsx_events_attrs[] = {
 | |
| 	EVENT_PTR(tx_start),
 | |
| 	EVENT_PTR(tx_abort),
 | |
| 	EVENT_PTR(tx_commit),
 | |
| 	EVENT_PTR(tx_capacity_read),
 | |
| 	EVENT_PTR(tx_capacity_write),
 | |
| 	EVENT_PTR(tx_conflict),
 | |
| 	EVENT_PTR(cycles_t),
 | |
| 	EVENT_PTR(cycles_ct),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static ssize_t freeze_on_smi_show(struct device *cdev,
 | |
| 				  struct device_attribute *attr,
 | |
| 				  char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(freeze_on_smi_mutex);
 | |
| 
 | |
| static ssize_t freeze_on_smi_store(struct device *cdev,
 | |
| 				   struct device_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 0, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (val > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&freeze_on_smi_mutex);
 | |
| 
 | |
| 	if (x86_pmu.attr_freeze_on_smi == val)
 | |
| 		goto done;
 | |
| 
 | |
| 	x86_pmu.attr_freeze_on_smi = val;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	on_each_cpu(flip_smm_bit, &val, 1);
 | |
| 	put_online_cpus();
 | |
| done:
 | |
| 	mutex_unlock(&freeze_on_smi_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void update_tfa_sched(void *ignored)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	/*
 | |
| 	 * check if PMC3 is used
 | |
| 	 * and if so force schedule out for all event types all contexts
 | |
| 	 */
 | |
| 	if (test_bit(3, cpuc->active_mask))
 | |
| 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
 | |
| }
 | |
| 
 | |
| static ssize_t show_sysctl_tfa(struct device *cdev,
 | |
| 			      struct device_attribute *attr,
 | |
| 			      char *buf)
 | |
| {
 | |
| 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
 | |
| }
 | |
| 
 | |
| static ssize_t set_sysctl_tfa(struct device *cdev,
 | |
| 			      struct device_attribute *attr,
 | |
| 			      const char *buf, size_t count)
 | |
| {
 | |
| 	bool val;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtobool(buf, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* no change */
 | |
| 	if (val == allow_tsx_force_abort)
 | |
| 		return count;
 | |
| 
 | |
| 	allow_tsx_force_abort = val;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	on_each_cpu(update_tfa_sched, NULL, 1);
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| static DEVICE_ATTR_RW(freeze_on_smi);
 | |
| 
 | |
| static ssize_t branches_show(struct device *cdev,
 | |
| 			     struct device_attribute *attr,
 | |
| 			     char *buf)
 | |
| {
 | |
| 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR_RO(branches);
 | |
| 
 | |
| static struct attribute *lbr_attrs[] = {
 | |
| 	&dev_attr_branches.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static char pmu_name_str[30];
 | |
| 
 | |
| static ssize_t pmu_name_show(struct device *cdev,
 | |
| 			     struct device_attribute *attr,
 | |
| 			     char *buf)
 | |
| {
 | |
| 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR_RO(pmu_name);
 | |
| 
 | |
| static struct attribute *intel_pmu_caps_attrs[] = {
 | |
|        &dev_attr_pmu_name.attr,
 | |
|        NULL
 | |
| };
 | |
| 
 | |
| static DEVICE_ATTR(allow_tsx_force_abort, 0644,
 | |
| 		   show_sysctl_tfa,
 | |
| 		   set_sysctl_tfa);
 | |
| 
 | |
| static struct attribute *intel_pmu_attrs[] = {
 | |
| 	&dev_attr_freeze_on_smi.attr,
 | |
| 	&dev_attr_allow_tsx_force_abort.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static umode_t
 | |
| tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
 | |
| {
 | |
| 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
 | |
| }
 | |
| 
 | |
| static umode_t
 | |
| pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
 | |
| {
 | |
| 	return x86_pmu.pebs ? attr->mode : 0;
 | |
| }
 | |
| 
 | |
| static umode_t
 | |
| lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
 | |
| {
 | |
| 	return x86_pmu.lbr_nr ? attr->mode : 0;
 | |
| }
 | |
| 
 | |
| static umode_t
 | |
| exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
 | |
| {
 | |
| 	return x86_pmu.version >= 2 ? attr->mode : 0;
 | |
| }
 | |
| 
 | |
| static umode_t
 | |
| default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
 | |
| {
 | |
| 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
 | |
| 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
 | |
| 
 | |
| 	return attr->mode;
 | |
| }
 | |
| 
 | |
| static struct attribute_group group_events_td  = {
 | |
| 	.name = "events",
 | |
| };
 | |
| 
 | |
| static struct attribute_group group_events_mem = {
 | |
| 	.name       = "events",
 | |
| 	.is_visible = pebs_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group group_events_tsx = {
 | |
| 	.name       = "events",
 | |
| 	.is_visible = tsx_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group group_caps_gen = {
 | |
| 	.name  = "caps",
 | |
| 	.attrs = intel_pmu_caps_attrs,
 | |
| };
 | |
| 
 | |
| static struct attribute_group group_caps_lbr = {
 | |
| 	.name       = "caps",
 | |
| 	.attrs	    = lbr_attrs,
 | |
| 	.is_visible = lbr_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group group_format_extra = {
 | |
| 	.name       = "format",
 | |
| 	.is_visible = exra_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group group_format_extra_skl = {
 | |
| 	.name       = "format",
 | |
| 	.is_visible = exra_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group group_default = {
 | |
| 	.attrs      = intel_pmu_attrs,
 | |
| 	.is_visible = default_is_visible,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group *attr_update[] = {
 | |
| 	&group_events_td,
 | |
| 	&group_events_mem,
 | |
| 	&group_events_tsx,
 | |
| 	&group_caps_gen,
 | |
| 	&group_caps_lbr,
 | |
| 	&group_format_extra,
 | |
| 	&group_format_extra_skl,
 | |
| 	&group_default,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
 | |
| 
 | |
| static struct attribute *adl_hybrid_events_attrs[] = {
 | |
| 	EVENT_PTR(slots_adl),
 | |
| 	EVENT_PTR(td_retiring_adl),
 | |
| 	EVENT_PTR(td_bad_spec_adl),
 | |
| 	EVENT_PTR(td_fe_bound_adl),
 | |
| 	EVENT_PTR(td_be_bound_adl),
 | |
| 	EVENT_PTR(td_heavy_ops_adl),
 | |
| 	EVENT_PTR(td_br_mis_adl),
 | |
| 	EVENT_PTR(td_fetch_lat_adl),
 | |
| 	EVENT_PTR(td_mem_bound_adl),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| /* Must be in IDX order */
 | |
| EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
 | |
| EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
 | |
| EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
 | |
| 
 | |
| static struct attribute *adl_hybrid_mem_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_adl),
 | |
| 	EVENT_PTR(mem_st_adl),
 | |
| 	EVENT_PTR(mem_ld_aux_adl),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *mtl_hybrid_mem_attrs[] = {
 | |
| 	EVENT_PTR(mem_ld_adl),
 | |
| 	EVENT_PTR(mem_st_adl),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
 | |
| EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
 | |
| 
 | |
| static struct attribute *adl_hybrid_tsx_attrs[] = {
 | |
| 	EVENT_PTR(tx_start_adl),
 | |
| 	EVENT_PTR(tx_abort_adl),
 | |
| 	EVENT_PTR(tx_commit_adl),
 | |
| 	EVENT_PTR(tx_capacity_read_adl),
 | |
| 	EVENT_PTR(tx_capacity_write_adl),
 | |
| 	EVENT_PTR(tx_conflict_adl),
 | |
| 	EVENT_PTR(cycles_t_adl),
 | |
| 	EVENT_PTR(cycles_ct_adl),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
 | |
| FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
 | |
| FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
 | |
| FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
 | |
| FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
 | |
| 
 | |
| #define ADL_HYBRID_RTM_FORMAT_ATTR	\
 | |
| 	FORMAT_HYBRID_PTR(in_tx),	\
 | |
| 	FORMAT_HYBRID_PTR(in_tx_cp)
 | |
| 
 | |
| #define ADL_HYBRID_FORMAT_ATTR		\
 | |
| 	FORMAT_HYBRID_PTR(offcore_rsp),	\
 | |
| 	FORMAT_HYBRID_PTR(ldlat),	\
 | |
| 	FORMAT_HYBRID_PTR(frontend)
 | |
| 
 | |
| static struct attribute *adl_hybrid_extra_attr_rtm[] = {
 | |
| 	ADL_HYBRID_RTM_FORMAT_ATTR,
 | |
| 	ADL_HYBRID_FORMAT_ATTR,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute *adl_hybrid_extra_attr[] = {
 | |
| 	ADL_HYBRID_FORMAT_ATTR,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| PMU_FORMAT_ATTR_SHOW(snoop_rsp, "config1:0-63");
 | |
| FORMAT_ATTR_HYBRID(snoop_rsp,	hybrid_small);
 | |
| 
 | |
| static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
 | |
| 	ADL_HYBRID_RTM_FORMAT_ATTR,
 | |
| 	ADL_HYBRID_FORMAT_ATTR,
 | |
| 	FORMAT_HYBRID_PTR(snoop_rsp),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute *mtl_hybrid_extra_attr[] = {
 | |
| 	ADL_HYBRID_FORMAT_ATTR,
 | |
| 	FORMAT_HYBRID_PTR(snoop_rsp),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
 | |
| {
 | |
| 	struct device *dev = kobj_to_dev(kobj);
 | |
| 	struct x86_hybrid_pmu *pmu =
 | |
| 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
 | |
| 	struct perf_pmu_events_hybrid_attr *pmu_attr =
 | |
| 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
 | |
| 
 | |
| 	return pmu->cpu_type & pmu_attr->pmu_type;
 | |
| }
 | |
| 
 | |
| static umode_t hybrid_events_is_visible(struct kobject *kobj,
 | |
| 					struct attribute *attr, int i)
 | |
| {
 | |
| 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
 | |
| }
 | |
| 
 | |
| static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
 | |
| {
 | |
| 	int cpu = cpumask_first(&pmu->supported_cpus);
 | |
| 
 | |
| 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
 | |
| }
 | |
| 
 | |
| static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
 | |
| 				     struct attribute *attr, int i)
 | |
| {
 | |
| 	struct device *dev = kobj_to_dev(kobj);
 | |
| 	struct x86_hybrid_pmu *pmu =
 | |
| 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
 | |
| 	int cpu = hybrid_find_supported_cpu(pmu);
 | |
| 
 | |
| 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
 | |
| }
 | |
| 
 | |
| static umode_t hybrid_format_is_visible(struct kobject *kobj,
 | |
| 					struct attribute *attr, int i)
 | |
| {
 | |
| 	struct device *dev = kobj_to_dev(kobj);
 | |
| 	struct x86_hybrid_pmu *pmu =
 | |
| 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
 | |
| 	struct perf_pmu_format_hybrid_attr *pmu_attr =
 | |
| 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
 | |
| 	int cpu = hybrid_find_supported_cpu(pmu);
 | |
| 
 | |
| 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
 | |
| }
 | |
| 
 | |
| static struct attribute_group hybrid_group_events_td  = {
 | |
| 	.name		= "events",
 | |
| 	.is_visible	= hybrid_events_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group hybrid_group_events_mem = {
 | |
| 	.name		= "events",
 | |
| 	.is_visible	= hybrid_events_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group hybrid_group_events_tsx = {
 | |
| 	.name		= "events",
 | |
| 	.is_visible	= hybrid_tsx_is_visible,
 | |
| };
 | |
| 
 | |
| static struct attribute_group hybrid_group_format_extra = {
 | |
| 	.name		= "format",
 | |
| 	.is_visible	= hybrid_format_is_visible,
 | |
| };
 | |
| 
 | |
| static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
 | |
| 					  struct device_attribute *attr,
 | |
| 					  char *buf)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu =
 | |
| 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
 | |
| 
 | |
| 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
 | |
| static struct attribute *intel_hybrid_cpus_attrs[] = {
 | |
| 	&dev_attr_cpus.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group hybrid_group_cpus = {
 | |
| 	.attrs		= intel_hybrid_cpus_attrs,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group *hybrid_attr_update[] = {
 | |
| 	&hybrid_group_events_td,
 | |
| 	&hybrid_group_events_mem,
 | |
| 	&hybrid_group_events_tsx,
 | |
| 	&group_caps_gen,
 | |
| 	&group_caps_lbr,
 | |
| 	&hybrid_group_format_extra,
 | |
| 	&group_default,
 | |
| 	&hybrid_group_cpus,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute *empty_attrs;
 | |
| 
 | |
| static void intel_pmu_check_num_counters(int *num_counters,
 | |
| 					 int *num_counters_fixed,
 | |
| 					 u64 *intel_ctrl, u64 fixed_mask)
 | |
| {
 | |
| 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
 | |
| 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
 | |
| 		     *num_counters, INTEL_PMC_MAX_GENERIC);
 | |
| 		*num_counters = INTEL_PMC_MAX_GENERIC;
 | |
| 	}
 | |
| 	*intel_ctrl = (1ULL << *num_counters) - 1;
 | |
| 
 | |
| 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
 | |
| 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
 | |
| 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
 | |
| 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
 | |
| 	}
 | |
| 
 | |
| 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
 | |
| }
 | |
| 
 | |
| static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
 | |
| 					      int num_counters,
 | |
| 					      int num_counters_fixed,
 | |
| 					      u64 intel_ctrl)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	if (!event_constraints)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * event on fixed counter2 (REF_CYCLES) only works on this
 | |
| 	 * counter, so do not extend mask to generic counters
 | |
| 	 */
 | |
| 	for_each_event_constraint(c, event_constraints) {
 | |
| 		/*
 | |
| 		 * Don't extend the topdown slots and metrics
 | |
| 		 * events to the generic counters.
 | |
| 		 */
 | |
| 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
 | |
| 			/*
 | |
| 			 * Disable topdown slots and metrics events,
 | |
| 			 * if slots event is not in CPUID.
 | |
| 			 */
 | |
| 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
 | |
| 				c->idxmsk64 = 0;
 | |
| 			c->weight = hweight64(c->idxmsk64);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (c->cmask == FIXED_EVENT_FLAGS) {
 | |
| 			/* Disabled fixed counters which are not in CPUID */
 | |
| 			c->idxmsk64 &= intel_ctrl;
 | |
| 
 | |
| 			if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
 | |
| 				c->idxmsk64 |= (1ULL << num_counters) - 1;
 | |
| 		}
 | |
| 		c->idxmsk64 &=
 | |
| 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
 | |
| 		c->weight = hweight64(c->idxmsk64);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
 | |
| {
 | |
| 	struct extra_reg *er;
 | |
| 
 | |
| 	/*
 | |
| 	 * Access extra MSR may cause #GP under certain circumstances.
 | |
| 	 * E.g. KVM doesn't support offcore event
 | |
| 	 * Check all extra_regs here.
 | |
| 	 */
 | |
| 	if (!extra_regs)
 | |
| 		return;
 | |
| 
 | |
| 	for (er = extra_regs; er->msr; er++) {
 | |
| 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
 | |
| 		/* Disable LBR select mapping */
 | |
| 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
 | |
| 			x86_pmu.lbr_sel_map = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
 | |
| {
 | |
| 	struct x86_hybrid_pmu *pmu;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
 | |
| 		pmu = &x86_pmu.hybrid_pmu[i];
 | |
| 
 | |
| 		intel_pmu_check_num_counters(&pmu->num_counters,
 | |
| 					     &pmu->num_counters_fixed,
 | |
| 					     &pmu->intel_ctrl,
 | |
| 					     fixed_mask);
 | |
| 
 | |
| 		if (pmu->intel_cap.perf_metrics) {
 | |
| 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
 | |
| 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
 | |
| 		}
 | |
| 
 | |
| 		if (pmu->intel_cap.pebs_output_pt_available)
 | |
| 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
 | |
| 
 | |
| 		intel_pmu_check_event_constraints(pmu->event_constraints,
 | |
| 						  pmu->num_counters,
 | |
| 						  pmu->num_counters_fixed,
 | |
| 						  pmu->intel_ctrl);
 | |
| 
 | |
| 		intel_pmu_check_extra_regs(pmu->extra_regs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __always_inline bool is_mtl(u8 x86_model)
 | |
| {
 | |
| 	return (x86_model == INTEL_FAM6_METEORLAKE) ||
 | |
| 	       (x86_model == INTEL_FAM6_METEORLAKE_L);
 | |
| }
 | |
| 
 | |
| __init int intel_pmu_init(void)
 | |
| {
 | |
| 	struct attribute **extra_skl_attr = &empty_attrs;
 | |
| 	struct attribute **extra_attr = &empty_attrs;
 | |
| 	struct attribute **td_attr    = &empty_attrs;
 | |
| 	struct attribute **mem_attr   = &empty_attrs;
 | |
| 	struct attribute **tsx_attr   = &empty_attrs;
 | |
| 	union cpuid10_edx edx;
 | |
| 	union cpuid10_eax eax;
 | |
| 	union cpuid10_ebx ebx;
 | |
| 	unsigned int fixed_mask;
 | |
| 	bool pmem = false;
 | |
| 	int version, i;
 | |
| 	char *name;
 | |
| 	struct x86_hybrid_pmu *pmu;
 | |
| 
 | |
| 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
 | |
| 		switch (boot_cpu_data.x86) {
 | |
| 		case 0x6:
 | |
| 			return p6_pmu_init();
 | |
| 		case 0xb:
 | |
| 			return knc_pmu_init();
 | |
| 		case 0xf:
 | |
| 			return p4_pmu_init();
 | |
| 		}
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether the Architectural PerfMon supports
 | |
| 	 * Branch Misses Retired hw_event or not.
 | |
| 	 */
 | |
| 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
 | |
| 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	version = eax.split.version_id;
 | |
| 	if (version < 2)
 | |
| 		x86_pmu = core_pmu;
 | |
| 	else
 | |
| 		x86_pmu = intel_pmu;
 | |
| 
 | |
| 	x86_pmu.version			= version;
 | |
| 	x86_pmu.num_counters		= eax.split.num_counters;
 | |
| 	x86_pmu.cntval_bits		= eax.split.bit_width;
 | |
| 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
 | |
| 
 | |
| 	x86_pmu.events_maskl		= ebx.full;
 | |
| 	x86_pmu.events_mask_len		= eax.split.mask_length;
 | |
| 
 | |
| 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
 | |
| 
 | |
| 	/*
 | |
| 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
 | |
| 	 * assume at least 3 events, when not running in a hypervisor:
 | |
| 	 */
 | |
| 	if (version > 1 && version < 5) {
 | |
| 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
 | |
| 
 | |
| 		x86_pmu.num_counters_fixed =
 | |
| 			max((int)edx.split.num_counters_fixed, assume);
 | |
| 
 | |
| 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
 | |
| 	} else if (version >= 5)
 | |
| 		x86_pmu.num_counters_fixed = fls(fixed_mask);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
 | |
| 		u64 capabilities;
 | |
| 
 | |
| 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
 | |
| 		x86_pmu.intel_cap.capabilities = capabilities;
 | |
| 	}
 | |
| 
 | |
| 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
 | |
| 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
 | |
| 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
 | |
| 	}
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
 | |
| 		intel_pmu_arch_lbr_init();
 | |
| 
 | |
| 	intel_ds_init();
 | |
| 
 | |
| 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
 | |
| 
 | |
| 	if (version >= 5) {
 | |
| 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
 | |
| 		if (x86_pmu.intel_cap.anythread_deprecated)
 | |
| 			pr_cont(" AnyThread deprecated, ");
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the hw-cache-events table:
 | |
| 	 */
 | |
| 	switch (boot_cpu_data.x86_model) {
 | |
| 	case INTEL_FAM6_CORE_YONAH:
 | |
| 		pr_cont("Core events, ");
 | |
| 		name = "core";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_CORE2_MEROM:
 | |
| 		x86_add_quirk(intel_clovertown_quirk);
 | |
| 		/* fall through */
 | |
| 
 | |
| 	case INTEL_FAM6_CORE2_MEROM_L:
 | |
| 	case INTEL_FAM6_CORE2_PENRYN:
 | |
| 	case INTEL_FAM6_CORE2_DUNNINGTON:
 | |
| 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 
 | |
| 		intel_pmu_lbr_init_core();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_core2_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
 | |
| 		pr_cont("Core2 events, ");
 | |
| 		name = "core2";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_NEHALEM:
 | |
| 	case INTEL_FAM6_NEHALEM_EP:
 | |
| 	case INTEL_FAM6_NEHALEM_EX:
 | |
| 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_nhm();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
 | |
| 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
 | |
| 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
 | |
| 		x86_pmu.limit_period = nhm_limit_period;
 | |
| 
 | |
| 		mem_attr = nhm_mem_events_attrs;
 | |
| 
 | |
| 		/* UOPS_ISSUED.STALLED_CYCLES */
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
 | |
| 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
 | |
| 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
 | |
| 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
 | |
| 
 | |
| 		intel_pmu_pebs_data_source_nhm();
 | |
| 		x86_add_quirk(intel_nehalem_quirk);
 | |
| 		x86_pmu.pebs_no_tlb = 1;
 | |
| 		extra_attr = nhm_format_attr;
 | |
| 
 | |
| 		pr_cont("Nehalem events, ");
 | |
| 		name = "nehalem";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ATOM_BONNELL:
 | |
| 	case INTEL_FAM6_ATOM_BONNELL_MID:
 | |
| 	case INTEL_FAM6_ATOM_SALTWELL:
 | |
| 	case INTEL_FAM6_ATOM_SALTWELL_MID:
 | |
| 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
 | |
| 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 
 | |
| 		intel_pmu_lbr_init_atom();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_gen_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
 | |
| 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
 | |
| 		pr_cont("Atom events, ");
 | |
| 		name = "bonnell";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ATOM_SILVERMONT:
 | |
| 	case INTEL_FAM6_ATOM_SILVERMONT_D:
 | |
| 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
 | |
| 	case INTEL_FAM6_ATOM_AIRMONT:
 | |
| 	case INTEL_FAM6_ATOM_AIRMONT_MID:
 | |
| 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
 | |
| 			sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_slm();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_slm_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_slm_extra_regs;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		td_attr = slm_events_attrs;
 | |
| 		extra_attr = slm_format_attr;
 | |
| 		pr_cont("Silvermont events, ");
 | |
| 		name = "silvermont";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ATOM_GOLDMONT:
 | |
| 	case INTEL_FAM6_ATOM_GOLDMONT_D:
 | |
| 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_skl();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_slm_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_glm_extra_regs;
 | |
| 		/*
 | |
| 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
 | |
| 		 * for precise cycles.
 | |
| 		 * :pp is identical to :ppp
 | |
| 		 */
 | |
| 		x86_pmu.pebs_aliases = NULL;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		x86_pmu.lbr_pt_coexist = true;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		td_attr = glm_events_attrs;
 | |
| 		extra_attr = slm_format_attr;
 | |
| 		pr_cont("Goldmont events, ");
 | |
| 		name = "goldmont";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
 | |
| 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_skl();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_slm_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_glm_extra_regs;
 | |
| 		/*
 | |
| 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
 | |
| 		 * for precise cycles.
 | |
| 		 */
 | |
| 		x86_pmu.pebs_aliases = NULL;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		x86_pmu.lbr_pt_coexist = true;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
 | |
| 		x86_pmu.get_event_constraints = glp_get_event_constraints;
 | |
| 		td_attr = glm_events_attrs;
 | |
| 		/* Goldmont Plus has 4-wide pipeline */
 | |
| 		event_attr_td_total_slots_scale_glm.event_str = "4";
 | |
| 		extra_attr = slm_format_attr;
 | |
| 		pr_cont("Goldmont plus events, ");
 | |
| 		name = "goldmont_plus";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ATOM_TREMONT_D:
 | |
| 	case INTEL_FAM6_ATOM_TREMONT:
 | |
| 	case INTEL_FAM6_ATOM_TREMONT_L:
 | |
| 		x86_pmu.late_ack = true;
 | |
| 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
 | |
| 
 | |
| 		intel_pmu_lbr_init_skl();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_slm_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_tnt_extra_regs;
 | |
| 		/*
 | |
| 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
 | |
| 		 * for precise cycles.
 | |
| 		 */
 | |
| 		x86_pmu.pebs_aliases = NULL;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		x86_pmu.lbr_pt_coexist = true;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
 | |
| 		td_attr = tnt_events_attrs;
 | |
| 		extra_attr = slm_format_attr;
 | |
| 		pr_cont("Tremont events, ");
 | |
| 		name = "Tremont";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ATOM_GRACEMONT:
 | |
| 		x86_pmu.mid_ack = true;
 | |
| 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_slm_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_grt_extra_regs;
 | |
| 
 | |
| 		x86_pmu.pebs_aliases = NULL;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		x86_pmu.pebs_block = true;
 | |
| 		x86_pmu.lbr_pt_coexist = true;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
 | |
| 
 | |
| 		intel_pmu_pebs_data_source_grt();
 | |
| 		x86_pmu.pebs_latency_data = adl_latency_data_small;
 | |
| 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
 | |
| 		x86_pmu.limit_period = spr_limit_period;
 | |
| 		td_attr = tnt_events_attrs;
 | |
| 		mem_attr = grt_mem_attrs;
 | |
| 		extra_attr = nhm_format_attr;
 | |
| 		pr_cont("Gracemont events, ");
 | |
| 		name = "gracemont";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_WESTMERE:
 | |
| 	case INTEL_FAM6_WESTMERE_EP:
 | |
| 	case INTEL_FAM6_WESTMERE_EX:
 | |
| 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_nhm();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_westmere_event_constraints;
 | |
| 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
 | |
| 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_westmere_extra_regs;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 
 | |
| 		mem_attr = nhm_mem_events_attrs;
 | |
| 
 | |
| 		/* UOPS_ISSUED.STALLED_CYCLES */
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
 | |
| 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
 | |
| 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
 | |
| 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
 | |
| 
 | |
| 		intel_pmu_pebs_data_source_nhm();
 | |
| 		extra_attr = nhm_format_attr;
 | |
| 		pr_cont("Westmere events, ");
 | |
| 		name = "westmere";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_SANDYBRIDGE:
 | |
| 	case INTEL_FAM6_SANDYBRIDGE_X:
 | |
| 		x86_add_quirk(intel_sandybridge_quirk);
 | |
| 		x86_add_quirk(intel_ht_bug);
 | |
| 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_snb();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_snb_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
 | |
| 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
 | |
| 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
 | |
| 			x86_pmu.extra_regs = intel_snbep_extra_regs;
 | |
| 		else
 | |
| 			x86_pmu.extra_regs = intel_snb_extra_regs;
 | |
| 
 | |
| 
 | |
| 		/* all extra regs are per-cpu when HT is on */
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 
 | |
| 		td_attr  = snb_events_attrs;
 | |
| 		mem_attr = snb_mem_events_attrs;
 | |
| 
 | |
| 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
 | |
| 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
 | |
| 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
 | |
| 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
 | |
| 
 | |
| 		extra_attr = nhm_format_attr;
 | |
| 
 | |
| 		pr_cont("SandyBridge events, ");
 | |
| 		name = "sandybridge";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_IVYBRIDGE:
 | |
| 	case INTEL_FAM6_IVYBRIDGE_X:
 | |
| 		x86_add_quirk(intel_ht_bug);
 | |
| 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
 | |
| 		       sizeof(hw_cache_event_ids));
 | |
| 		/* dTLB-load-misses on IVB is different than SNB */
 | |
| 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
 | |
| 
 | |
| 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
 | |
| 		       sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_snb();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_ivb_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
 | |
| 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
 | |
| 			x86_pmu.extra_regs = intel_snbep_extra_regs;
 | |
| 		else
 | |
| 			x86_pmu.extra_regs = intel_snb_extra_regs;
 | |
| 		/* all extra regs are per-cpu when HT is on */
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 
 | |
| 		td_attr  = snb_events_attrs;
 | |
| 		mem_attr = snb_mem_events_attrs;
 | |
| 
 | |
| 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
 | |
| 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
 | |
| 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
 | |
| 
 | |
| 		extra_attr = nhm_format_attr;
 | |
| 
 | |
| 		pr_cont("IvyBridge events, ");
 | |
| 		name = "ivybridge";
 | |
| 		break;
 | |
| 
 | |
| 
 | |
| 	case INTEL_FAM6_HASWELL:
 | |
| 	case INTEL_FAM6_HASWELL_X:
 | |
| 	case INTEL_FAM6_HASWELL_L:
 | |
| 	case INTEL_FAM6_HASWELL_G:
 | |
| 		x86_add_quirk(intel_ht_bug);
 | |
| 		x86_add_quirk(intel_pebs_isolation_quirk);
 | |
| 		x86_pmu.late_ack = true;
 | |
| 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		intel_pmu_lbr_init_hsw();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_hsw_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_snbep_extra_regs;
 | |
| 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		/* all extra regs are per-cpu when HT is on */
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 
 | |
| 		x86_pmu.hw_config = hsw_hw_config;
 | |
| 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
 | |
| 		x86_pmu.lbr_double_abort = true;
 | |
| 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
 | |
| 			hsw_format_attr : nhm_format_attr;
 | |
| 		td_attr  = hsw_events_attrs;
 | |
| 		mem_attr = hsw_mem_events_attrs;
 | |
| 		tsx_attr = hsw_tsx_events_attrs;
 | |
| 		pr_cont("Haswell events, ");
 | |
| 		name = "haswell";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_BROADWELL:
 | |
| 	case INTEL_FAM6_BROADWELL_D:
 | |
| 	case INTEL_FAM6_BROADWELL_G:
 | |
| 	case INTEL_FAM6_BROADWELL_X:
 | |
| 		x86_add_quirk(intel_pebs_isolation_quirk);
 | |
| 		x86_pmu.late_ack = true;
 | |
| 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
 | |
| 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
 | |
| 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
 | |
| 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
 | |
| 									  HSW_SNOOP_DRAM;
 | |
| 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
 | |
| 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
 | |
| 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
 | |
| 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
 | |
| 
 | |
| 		intel_pmu_lbr_init_hsw();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_bdw_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_snbep_extra_regs;
 | |
| 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		/* all extra regs are per-cpu when HT is on */
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 
 | |
| 		x86_pmu.hw_config = hsw_hw_config;
 | |
| 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
 | |
| 		x86_pmu.limit_period = bdw_limit_period;
 | |
| 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
 | |
| 			hsw_format_attr : nhm_format_attr;
 | |
| 		td_attr  = hsw_events_attrs;
 | |
| 		mem_attr = hsw_mem_events_attrs;
 | |
| 		tsx_attr = hsw_tsx_events_attrs;
 | |
| 		pr_cont("Broadwell events, ");
 | |
| 		name = "broadwell";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_XEON_PHI_KNL:
 | |
| 	case INTEL_FAM6_XEON_PHI_KNM:
 | |
| 		memcpy(hw_cache_event_ids,
 | |
| 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs,
 | |
| 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
 | |
| 		intel_pmu_lbr_init_knl();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_slm_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_knl_extra_regs;
 | |
| 
 | |
| 		/* all extra regs are per-cpu when HT is on */
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 		extra_attr = slm_format_attr;
 | |
| 		pr_cont("Knights Landing/Mill events, ");
 | |
| 		name = "knights-landing";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_SKYLAKE_X:
 | |
| 		pmem = true;
 | |
| 		/* fall through */
 | |
| 	case INTEL_FAM6_SKYLAKE_L:
 | |
| 	case INTEL_FAM6_SKYLAKE:
 | |
| 	case INTEL_FAM6_KABYLAKE_L:
 | |
| 	case INTEL_FAM6_KABYLAKE:
 | |
| 	case INTEL_FAM6_COMETLAKE_L:
 | |
| 	case INTEL_FAM6_COMETLAKE:
 | |
| 		x86_add_quirk(intel_pebs_isolation_quirk);
 | |
| 		x86_pmu.late_ack = true;
 | |
| 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
 | |
| 		intel_pmu_lbr_init_skl();
 | |
| 
 | |
| 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
 | |
| 		event_attr_td_recovery_bubbles.event_str_noht =
 | |
| 			"event=0xd,umask=0x1,cmask=1";
 | |
| 		event_attr_td_recovery_bubbles.event_str_ht =
 | |
| 			"event=0xd,umask=0x1,cmask=1,any=1";
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_skl_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_skl_extra_regs;
 | |
| 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		/* all extra regs are per-cpu when HT is on */
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 
 | |
| 		x86_pmu.hw_config = hsw_hw_config;
 | |
| 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
 | |
| 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
 | |
| 			hsw_format_attr : nhm_format_attr;
 | |
| 		extra_skl_attr = skl_format_attr;
 | |
| 		td_attr  = hsw_events_attrs;
 | |
| 		mem_attr = hsw_mem_events_attrs;
 | |
| 		tsx_attr = hsw_tsx_events_attrs;
 | |
| 		intel_pmu_pebs_data_source_skl(pmem);
 | |
| 
 | |
| 		/*
 | |
| 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
 | |
| 		 * TSX force abort hooks are not required on these systems. Only deploy
 | |
| 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
 | |
| 		 */
 | |
| 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
 | |
| 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
 | |
| 			x86_pmu.flags |= PMU_FL_TFA;
 | |
| 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
 | |
| 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
 | |
| 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
 | |
| 		}
 | |
| 
 | |
| 		pr_cont("Skylake events, ");
 | |
| 		name = "skylake";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ICELAKE_X:
 | |
| 	case INTEL_FAM6_ICELAKE_D:
 | |
| 		pmem = true;
 | |
| 		/* fall through */
 | |
| 	case INTEL_FAM6_ICELAKE_L:
 | |
| 	case INTEL_FAM6_ICELAKE:
 | |
| 	case INTEL_FAM6_TIGERLAKE_L:
 | |
| 	case INTEL_FAM6_TIGERLAKE:
 | |
| 	case INTEL_FAM6_ROCKETLAKE:
 | |
| 		x86_pmu.late_ack = true;
 | |
| 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
 | |
| 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
 | |
| 		intel_pmu_lbr_init_skl();
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_icl_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_icl_extra_regs;
 | |
| 		x86_pmu.pebs_aliases = NULL;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 
 | |
| 		x86_pmu.hw_config = hsw_hw_config;
 | |
| 		x86_pmu.get_event_constraints = icl_get_event_constraints;
 | |
| 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
 | |
| 			hsw_format_attr : nhm_format_attr;
 | |
| 		extra_skl_attr = skl_format_attr;
 | |
| 		mem_attr = icl_events_attrs;
 | |
| 		td_attr = icl_td_events_attrs;
 | |
| 		tsx_attr = icl_tsx_events_attrs;
 | |
| 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
 | |
| 		x86_pmu.lbr_pt_coexist = true;
 | |
| 		intel_pmu_pebs_data_source_skl(pmem);
 | |
| 		x86_pmu.num_topdown_events = 4;
 | |
| 		x86_pmu.update_topdown_event = icl_update_topdown_event;
 | |
| 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
 | |
| 		pr_cont("Icelake events, ");
 | |
| 		name = "icelake";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
 | |
| 	case INTEL_FAM6_EMERALDRAPIDS_X:
 | |
| 		pmem = true;
 | |
| 		x86_pmu.late_ack = true;
 | |
| 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
 | |
| 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
 | |
| 
 | |
| 		x86_pmu.event_constraints = intel_spr_event_constraints;
 | |
| 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
 | |
| 		x86_pmu.extra_regs = intel_spr_extra_regs;
 | |
| 		x86_pmu.limit_period = spr_limit_period;
 | |
| 		x86_pmu.pebs_aliases = NULL;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		x86_pmu.pebs_block = true;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
 | |
| 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
 | |
| 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
 | |
| 
 | |
| 		x86_pmu.hw_config = hsw_hw_config;
 | |
| 		x86_pmu.get_event_constraints = spr_get_event_constraints;
 | |
| 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
 | |
| 			hsw_format_attr : nhm_format_attr;
 | |
| 		extra_skl_attr = skl_format_attr;
 | |
| 		mem_attr = spr_events_attrs;
 | |
| 		td_attr = spr_td_events_attrs;
 | |
| 		tsx_attr = spr_tsx_events_attrs;
 | |
| 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
 | |
| 		x86_pmu.lbr_pt_coexist = true;
 | |
| 		intel_pmu_pebs_data_source_skl(pmem);
 | |
| 		x86_pmu.num_topdown_events = 8;
 | |
| 		x86_pmu.update_topdown_event = icl_update_topdown_event;
 | |
| 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
 | |
| 		pr_cont("Sapphire Rapids events, ");
 | |
| 		name = "sapphire_rapids";
 | |
| 		break;
 | |
| 
 | |
| 	case INTEL_FAM6_ALDERLAKE:
 | |
| 	case INTEL_FAM6_ALDERLAKE_L:
 | |
| 	case INTEL_FAM6_RAPTORLAKE:
 | |
| 	case INTEL_FAM6_RAPTORLAKE_P:
 | |
| 	case INTEL_FAM6_RAPTORLAKE_S:
 | |
| 	case INTEL_FAM6_METEORLAKE:
 | |
| 	case INTEL_FAM6_METEORLAKE_L:
 | |
| 		/*
 | |
| 		 * Alder Lake has 2 types of CPU, core and atom.
 | |
| 		 *
 | |
| 		 * Initialize the common PerfMon capabilities here.
 | |
| 		 */
 | |
| 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
 | |
| 					     sizeof(struct x86_hybrid_pmu),
 | |
| 					     GFP_KERNEL);
 | |
| 		if (!x86_pmu.hybrid_pmu)
 | |
| 			return -ENOMEM;
 | |
| 		static_branch_enable(&perf_is_hybrid);
 | |
| 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
 | |
| 
 | |
| 		x86_pmu.pebs_aliases = NULL;
 | |
| 		x86_pmu.pebs_prec_dist = true;
 | |
| 		x86_pmu.pebs_block = true;
 | |
| 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
 | |
| 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
 | |
| 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
 | |
| 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
 | |
| 		x86_pmu.lbr_pt_coexist = true;
 | |
| 		x86_pmu.pebs_latency_data = adl_latency_data_small;
 | |
| 		x86_pmu.num_topdown_events = 8;
 | |
| 		x86_pmu.update_topdown_event = adl_update_topdown_event;
 | |
| 		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
 | |
| 
 | |
| 		x86_pmu.filter_match = intel_pmu_filter_match;
 | |
| 		x86_pmu.get_event_constraints = adl_get_event_constraints;
 | |
| 		x86_pmu.hw_config = adl_hw_config;
 | |
| 		x86_pmu.limit_period = spr_limit_period;
 | |
| 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
 | |
| 		/*
 | |
| 		 * The rtm_abort_event is used to check whether to enable GPRs
 | |
| 		 * for the RTM abort event. Atom doesn't have the RTM abort
 | |
| 		 * event. There is no harmful to set it in the common
 | |
| 		 * x86_pmu.rtm_abort_event.
 | |
| 		 */
 | |
| 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
 | |
| 
 | |
| 		td_attr = adl_hybrid_events_attrs;
 | |
| 		mem_attr = adl_hybrid_mem_attrs;
 | |
| 		tsx_attr = adl_hybrid_tsx_attrs;
 | |
| 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
 | |
| 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
 | |
| 
 | |
| 		/* Initialize big core specific PerfMon capabilities.*/
 | |
| 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
 | |
| 		pmu->name = "cpu_core";
 | |
| 		pmu->cpu_type = hybrid_big;
 | |
| 		pmu->late_ack = true;
 | |
| 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
 | |
| 			pmu->num_counters = x86_pmu.num_counters + 2;
 | |
| 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
 | |
| 		} else {
 | |
| 			pmu->num_counters = x86_pmu.num_counters;
 | |
| 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
 | |
| 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
 | |
| 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
 | |
| 		 * mistakenly add extra counters for P-cores. Correct the number of
 | |
| 		 * counters here.
 | |
| 		 */
 | |
| 		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
 | |
| 			pmu->num_counters = x86_pmu.num_counters;
 | |
| 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
 | |
| 		}
 | |
| 
 | |
| 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
 | |
| 		pmu->unconstrained = (struct event_constraint)
 | |
| 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
 | |
| 							   0, pmu->num_counters, 0, 0);
 | |
| 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
 | |
| 		pmu->intel_cap.perf_metrics = 1;
 | |
| 		pmu->intel_cap.pebs_output_pt_available = 0;
 | |
| 
 | |
| 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
 | |
| 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
 | |
| 		pmu->event_constraints = intel_spr_event_constraints;
 | |
| 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
 | |
| 		pmu->extra_regs = intel_spr_extra_regs;
 | |
| 
 | |
| 		/* Initialize Atom core specific PerfMon capabilities.*/
 | |
| 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
 | |
| 		pmu->name = "cpu_atom";
 | |
| 		pmu->cpu_type = hybrid_small;
 | |
| 		pmu->mid_ack = true;
 | |
| 		pmu->num_counters = x86_pmu.num_counters;
 | |
| 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
 | |
| 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
 | |
| 		pmu->unconstrained = (struct event_constraint)
 | |
| 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
 | |
| 							   0, pmu->num_counters, 0, 0);
 | |
| 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
 | |
| 		pmu->intel_cap.perf_metrics = 0;
 | |
| 		pmu->intel_cap.pebs_output_pt_available = 1;
 | |
| 
 | |
| 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
 | |
| 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
 | |
| 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
 | |
| 		pmu->event_constraints = intel_slm_event_constraints;
 | |
| 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
 | |
| 		pmu->extra_regs = intel_grt_extra_regs;
 | |
| 		if (is_mtl(boot_cpu_data.x86_model)) {
 | |
| 			x86_pmu.pebs_latency_data = mtl_latency_data_small;
 | |
| 			extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
 | |
| 				mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
 | |
| 			mem_attr = mtl_hybrid_mem_attrs;
 | |
| 			intel_pmu_pebs_data_source_mtl();
 | |
| 			x86_pmu.get_event_constraints = mtl_get_event_constraints;
 | |
| 			pmu->extra_regs = intel_cmt_extra_regs;
 | |
| 			pr_cont("Meteorlake Hybrid events, ");
 | |
| 			name = "meteorlake_hybrid";
 | |
| 		} else {
 | |
| 			x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
 | |
| 			intel_pmu_pebs_data_source_adl();
 | |
| 			pr_cont("Alderlake Hybrid events, ");
 | |
| 			name = "alderlake_hybrid";
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		switch (x86_pmu.version) {
 | |
| 		case 1:
 | |
| 			x86_pmu.event_constraints = intel_v1_event_constraints;
 | |
| 			pr_cont("generic architected perfmon v1, ");
 | |
| 			name = "generic_arch_v1";
 | |
| 			break;
 | |
| 		default:
 | |
| 			/*
 | |
| 			 * default constraints for v2 and up
 | |
| 			 */
 | |
| 			x86_pmu.event_constraints = intel_gen_event_constraints;
 | |
| 			pr_cont("generic architected perfmon, ");
 | |
| 			name = "generic_arch_v2+";
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
 | |
| 
 | |
| 	if (!is_hybrid()) {
 | |
| 		group_events_td.attrs  = td_attr;
 | |
| 		group_events_mem.attrs = mem_attr;
 | |
| 		group_events_tsx.attrs = tsx_attr;
 | |
| 		group_format_extra.attrs = extra_attr;
 | |
| 		group_format_extra_skl.attrs = extra_skl_attr;
 | |
| 
 | |
| 		x86_pmu.attr_update = attr_update;
 | |
| 	} else {
 | |
| 		hybrid_group_events_td.attrs  = td_attr;
 | |
| 		hybrid_group_events_mem.attrs = mem_attr;
 | |
| 		hybrid_group_events_tsx.attrs = tsx_attr;
 | |
| 		hybrid_group_format_extra.attrs = extra_attr;
 | |
| 
 | |
| 		x86_pmu.attr_update = hybrid_attr_update;
 | |
| 	}
 | |
| 
 | |
| 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
 | |
| 				     &x86_pmu.num_counters_fixed,
 | |
| 				     &x86_pmu.intel_ctrl,
 | |
| 				     (u64)fixed_mask);
 | |
| 
 | |
| 	/* AnyThread may be deprecated on arch perfmon v5 or later */
 | |
| 	if (x86_pmu.intel_cap.anythread_deprecated)
 | |
| 		x86_pmu.format_attrs = intel_arch_formats_attr;
 | |
| 
 | |
| 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
 | |
| 					  x86_pmu.num_counters,
 | |
| 					  x86_pmu.num_counters_fixed,
 | |
| 					  x86_pmu.intel_ctrl);
 | |
| 	/*
 | |
| 	 * Access LBR MSR may cause #GP under certain circumstances.
 | |
| 	 * E.g. KVM doesn't support LBR MSR
 | |
| 	 * Check all LBT MSR here.
 | |
| 	 * Disable LBR access if any LBR MSRs can not be accessed.
 | |
| 	 */
 | |
| 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
 | |
| 		x86_pmu.lbr_nr = 0;
 | |
| 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
 | |
| 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
 | |
| 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
 | |
| 			x86_pmu.lbr_nr = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (x86_pmu.lbr_nr) {
 | |
| 		intel_pmu_lbr_init();
 | |
| 
 | |
| 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
 | |
| 
 | |
| 		/* only support branch_stack snapshot for perfmon >= v2 */
 | |
| 		if (x86_pmu.disable_all == intel_pmu_disable_all) {
 | |
| 			if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
 | |
| 				static_call_update(perf_snapshot_branch_stack,
 | |
| 						   intel_pmu_snapshot_arch_branch_stack);
 | |
| 			} else {
 | |
| 				static_call_update(perf_snapshot_branch_stack,
 | |
| 						   intel_pmu_snapshot_branch_stack);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
 | |
| 
 | |
| 	/* Support full width counters using alternative MSR range */
 | |
| 	if (x86_pmu.intel_cap.full_width_write) {
 | |
| 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
 | |
| 		x86_pmu.perfctr = MSR_IA32_PMC0;
 | |
| 		pr_cont("full-width counters, ");
 | |
| 	}
 | |
| 
 | |
| 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
 | |
| 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
 | |
| 
 | |
| 	if (is_hybrid())
 | |
| 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
 | |
| 
 | |
| 	if (x86_pmu.intel_cap.pebs_timing_info)
 | |
| 		x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * HT bug: phase 2 init
 | |
|  * Called once we have valid topology information to check
 | |
|  * whether or not HT is enabled
 | |
|  * If HT is off, then we disable the workaround
 | |
|  */
 | |
| static __init int fixup_ht_bug(void)
 | |
| {
 | |
| 	int c;
 | |
| 	/*
 | |
| 	 * problem not present on this CPU model, nothing to do
 | |
| 	 */
 | |
| 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (topology_max_smt_threads() > 1) {
 | |
| 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 
 | |
| 	hardlockup_detector_perf_stop();
 | |
| 
 | |
| 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
 | |
| 
 | |
| 	x86_pmu.start_scheduling = NULL;
 | |
| 	x86_pmu.commit_scheduling = NULL;
 | |
| 	x86_pmu.stop_scheduling = NULL;
 | |
| 
 | |
| 	hardlockup_detector_perf_restart();
 | |
| 
 | |
| 	for_each_online_cpu(c)
 | |
| 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
 | |
| 
 | |
| 	cpus_read_unlock();
 | |
| 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(fixup_ht_bug)
 |