1087 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1087 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * VGICv3 MMIO handling functions
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/irqchip/arm-gic-v3.h>
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <kvm/iodev.h>
 | |
| #include <kvm/arm_vgic.h>
 | |
| 
 | |
| #include <asm/kvm_emulate.h>
 | |
| #include <asm/kvm_arm.h>
 | |
| #include <asm/kvm_mmu.h>
 | |
| 
 | |
| #include "vgic.h"
 | |
| #include "vgic-mmio.h"
 | |
| 
 | |
| /* extract @num bytes at @offset bytes offset in data */
 | |
| unsigned long extract_bytes(u64 data, unsigned int offset,
 | |
| 			    unsigned int num)
 | |
| {
 | |
| 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
 | |
| }
 | |
| 
 | |
| /* allows updates of any half of a 64-bit register (or the whole thing) */
 | |
| u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
 | |
| 		     unsigned long val)
 | |
| {
 | |
| 	int lower = (offset & 4) * 8;
 | |
| 	int upper = lower + 8 * len - 1;
 | |
| 
 | |
| 	reg &= ~GENMASK_ULL(upper, lower);
 | |
| 	val &= GENMASK_ULL(len * 8 - 1, 0);
 | |
| 
 | |
| 	return reg | ((u64)val << lower);
 | |
| }
 | |
| 
 | |
| bool vgic_has_its(struct kvm *kvm)
 | |
| {
 | |
| 	struct vgic_dist *dist = &kvm->arch.vgic;
 | |
| 
 | |
| 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
 | |
| 		return false;
 | |
| 
 | |
| 	return dist->has_its;
 | |
| }
 | |
| 
 | |
| bool vgic_supports_direct_msis(struct kvm *kvm)
 | |
| {
 | |
| 	return (kvm_vgic_global_state.has_gicv4_1 ||
 | |
| 		(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The Revision field in the IIDR have the following meanings:
 | |
|  *
 | |
|  * Revision 2: Interrupt groups are guest-configurable and signaled using
 | |
|  * 	       their configured groups.
 | |
|  */
 | |
| 
 | |
| static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
 | |
| 					    gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
 | |
| 	u32 value = 0;
 | |
| 
 | |
| 	switch (addr & 0x0c) {
 | |
| 	case GICD_CTLR:
 | |
| 		if (vgic->enabled)
 | |
| 			value |= GICD_CTLR_ENABLE_SS_G1;
 | |
| 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
 | |
| 		if (vgic->nassgireq)
 | |
| 			value |= GICD_CTLR_nASSGIreq;
 | |
| 		break;
 | |
| 	case GICD_TYPER:
 | |
| 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
 | |
| 		value = (value >> 5) - 1;
 | |
| 		if (vgic_has_its(vcpu->kvm)) {
 | |
| 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
 | |
| 			value |= GICD_TYPER_LPIS;
 | |
| 		} else {
 | |
| 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
 | |
| 		}
 | |
| 		break;
 | |
| 	case GICD_TYPER2:
 | |
| 		if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
 | |
| 			value = GICD_TYPER2_nASSGIcap;
 | |
| 		break;
 | |
| 	case GICD_IIDR:
 | |
| 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
 | |
| 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
 | |
| 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
 | |
| 				    gpa_t addr, unsigned int len,
 | |
| 				    unsigned long val)
 | |
| {
 | |
| 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 | |
| 
 | |
| 	switch (addr & 0x0c) {
 | |
| 	case GICD_CTLR: {
 | |
| 		bool was_enabled, is_hwsgi;
 | |
| 
 | |
| 		mutex_lock(&vcpu->kvm->lock);
 | |
| 
 | |
| 		was_enabled = dist->enabled;
 | |
| 		is_hwsgi = dist->nassgireq;
 | |
| 
 | |
| 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 | |
| 
 | |
| 		/* Not a GICv4.1? No HW SGIs */
 | |
| 		if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
 | |
| 			val &= ~GICD_CTLR_nASSGIreq;
 | |
| 
 | |
| 		/* Dist stays enabled? nASSGIreq is RO */
 | |
| 		if (was_enabled && dist->enabled) {
 | |
| 			val &= ~GICD_CTLR_nASSGIreq;
 | |
| 			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
 | |
| 		}
 | |
| 
 | |
| 		/* Switching HW SGIs? */
 | |
| 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
 | |
| 		if (is_hwsgi != dist->nassgireq)
 | |
| 			vgic_v4_configure_vsgis(vcpu->kvm);
 | |
| 
 | |
| 		if (kvm_vgic_global_state.has_gicv4_1 &&
 | |
| 		    was_enabled != dist->enabled)
 | |
| 			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
 | |
| 		else if (!was_enabled && dist->enabled)
 | |
| 			vgic_kick_vcpus(vcpu->kvm);
 | |
| 
 | |
| 		mutex_unlock(&vcpu->kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case GICD_TYPER:
 | |
| 	case GICD_TYPER2:
 | |
| 	case GICD_IIDR:
 | |
| 		/* This is at best for documentation purposes... */
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
 | |
| 					   gpa_t addr, unsigned int len,
 | |
| 					   unsigned long val)
 | |
| {
 | |
| 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 | |
| 
 | |
| 	switch (addr & 0x0c) {
 | |
| 	case GICD_TYPER2:
 | |
| 	case GICD_IIDR:
 | |
| 		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
 | |
| 			return -EINVAL;
 | |
| 		return 0;
 | |
| 	case GICD_CTLR:
 | |
| 		/* Not a GICv4.1? No HW SGIs */
 | |
| 		if (!kvm_vgic_global_state.has_gicv4_1)
 | |
| 			val &= ~GICD_CTLR_nASSGIreq;
 | |
| 
 | |
| 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 | |
| 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
 | |
| 					    gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
 | |
| 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 | |
| 	unsigned long ret = 0;
 | |
| 
 | |
| 	if (!irq)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* The upper word is RAZ for us. */
 | |
| 	if (!(addr & 4))
 | |
| 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
 | |
| 
 | |
| 	vgic_put_irq(vcpu->kvm, irq);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
 | |
| 				    gpa_t addr, unsigned int len,
 | |
| 				    unsigned long val)
 | |
| {
 | |
| 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
 | |
| 	struct vgic_irq *irq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* The upper word is WI for us since we don't implement Aff3. */
 | |
| 	if (addr & 4)
 | |
| 		return;
 | |
| 
 | |
| 	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 | |
| 
 | |
| 	if (!irq)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
 | |
| 
 | |
| 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
 | |
| 	irq->mpidr = val & GENMASK(23, 0);
 | |
| 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 | |
| 	vgic_put_irq(vcpu->kvm, irq);
 | |
| }
 | |
| 
 | |
| static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
 | |
| 					     gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 | |
| 
 | |
| 	return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
 | |
| 				     gpa_t addr, unsigned int len,
 | |
| 				     unsigned long val)
 | |
| {
 | |
| 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 | |
| 	bool was_enabled = vgic_cpu->lpis_enabled;
 | |
| 
 | |
| 	if (!vgic_has_its(vcpu->kvm))
 | |
| 		return;
 | |
| 
 | |
| 	vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
 | |
| 
 | |
| 	if (was_enabled && !vgic_cpu->lpis_enabled) {
 | |
| 		vgic_flush_pending_lpis(vcpu);
 | |
| 		vgic_its_invalidate_cache(vcpu->kvm);
 | |
| 	}
 | |
| 
 | |
| 	if (!was_enabled && vgic_cpu->lpis_enabled)
 | |
| 		vgic_enable_lpis(vcpu);
 | |
| }
 | |
| 
 | |
| static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
 | |
| 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 | |
| 	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
 | |
| 
 | |
| 	if (!rdreg)
 | |
| 		return false;
 | |
| 
 | |
| 	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
 | |
| 		return false;
 | |
| 	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
 | |
| 		struct list_head *rd_regions = &vgic->rd_regions;
 | |
| 		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
 | |
| 
 | |
| 		/*
 | |
| 		 * the rdist is the last one of the redist region,
 | |
| 		 * check whether there is no other contiguous rdist region
 | |
| 		 */
 | |
| 		list_for_each_entry(iter, rd_regions, list) {
 | |
| 			if (iter->base == end && iter->free_index > 0)
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
 | |
| 					      gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
 | |
| 	int target_vcpu_id = vcpu->vcpu_id;
 | |
| 	u64 value;
 | |
| 
 | |
| 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
 | |
| 	value |= ((target_vcpu_id & 0xffff) << 8);
 | |
| 
 | |
| 	if (vgic_has_its(vcpu->kvm))
 | |
| 		value |= GICR_TYPER_PLPIS;
 | |
| 
 | |
| 	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
 | |
| 		value |= GICR_TYPER_LAST;
 | |
| 
 | |
| 	return extract_bytes(value, addr & 7, len);
 | |
| }
 | |
| 
 | |
| static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
 | |
| 					     gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
 | |
| }
 | |
| 
 | |
| static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
 | |
| 					      gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	switch (addr & 0xffff) {
 | |
| 	case GICD_PIDR2:
 | |
| 		/* report a GICv3 compliant implementation */
 | |
| 		return 0x3b;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
 | |
| 					 gpa_t addr, unsigned int len,
 | |
| 					 unsigned long val)
 | |
| {
 | |
| 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	for (i = 0; i < len * 8; i++) {
 | |
| 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
 | |
| 		if (test_bit(i, &val)) {
 | |
| 			/*
 | |
| 			 * pending_latch is set irrespective of irq type
 | |
| 			 * (level or edge) to avoid dependency that VM should
 | |
| 			 * restore irq config before pending info.
 | |
| 			 */
 | |
| 			irq->pending_latch = true;
 | |
| 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 | |
| 		} else {
 | |
| 			irq->pending_latch = false;
 | |
| 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		vgic_put_irq(vcpu->kvm, irq);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We want to avoid outer shareable. */
 | |
| u64 vgic_sanitise_shareability(u64 field)
 | |
| {
 | |
| 	switch (field) {
 | |
| 	case GIC_BASER_OuterShareable:
 | |
| 		return GIC_BASER_InnerShareable;
 | |
| 	default:
 | |
| 		return field;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Avoid any inner non-cacheable mapping. */
 | |
| u64 vgic_sanitise_inner_cacheability(u64 field)
 | |
| {
 | |
| 	switch (field) {
 | |
| 	case GIC_BASER_CACHE_nCnB:
 | |
| 	case GIC_BASER_CACHE_nC:
 | |
| 		return GIC_BASER_CACHE_RaWb;
 | |
| 	default:
 | |
| 		return field;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Non-cacheable or same-as-inner are OK. */
 | |
| u64 vgic_sanitise_outer_cacheability(u64 field)
 | |
| {
 | |
| 	switch (field) {
 | |
| 	case GIC_BASER_CACHE_SameAsInner:
 | |
| 	case GIC_BASER_CACHE_nC:
 | |
| 		return field;
 | |
| 	default:
 | |
| 		return GIC_BASER_CACHE_SameAsInner;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
 | |
| 			u64 (*sanitise_fn)(u64))
 | |
| {
 | |
| 	u64 field = (reg & field_mask) >> field_shift;
 | |
| 
 | |
| 	field = sanitise_fn(field) << field_shift;
 | |
| 	return (reg & ~field_mask) | field;
 | |
| }
 | |
| 
 | |
| #define PROPBASER_RES0_MASK						\
 | |
| 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
 | |
| #define PENDBASER_RES0_MASK						\
 | |
| 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
 | |
| 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
 | |
| 
 | |
| static u64 vgic_sanitise_pendbaser(u64 reg)
 | |
| {
 | |
| 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
 | |
| 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
 | |
| 				  vgic_sanitise_shareability);
 | |
| 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
 | |
| 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
 | |
| 				  vgic_sanitise_inner_cacheability);
 | |
| 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
 | |
| 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
 | |
| 				  vgic_sanitise_outer_cacheability);
 | |
| 
 | |
| 	reg &= ~PENDBASER_RES0_MASK;
 | |
| 
 | |
| 	return reg;
 | |
| }
 | |
| 
 | |
| static u64 vgic_sanitise_propbaser(u64 reg)
 | |
| {
 | |
| 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
 | |
| 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
 | |
| 				  vgic_sanitise_shareability);
 | |
| 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
 | |
| 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
 | |
| 				  vgic_sanitise_inner_cacheability);
 | |
| 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
 | |
| 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
 | |
| 				  vgic_sanitise_outer_cacheability);
 | |
| 
 | |
| 	reg &= ~PROPBASER_RES0_MASK;
 | |
| 	return reg;
 | |
| }
 | |
| 
 | |
| static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
 | |
| 					     gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 | |
| 
 | |
| 	return extract_bytes(dist->propbaser, addr & 7, len);
 | |
| }
 | |
| 
 | |
| static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
 | |
| 				     gpa_t addr, unsigned int len,
 | |
| 				     unsigned long val)
 | |
| {
 | |
| 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 | |
| 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 | |
| 	u64 old_propbaser, propbaser;
 | |
| 
 | |
| 	/* Storing a value with LPIs already enabled is undefined */
 | |
| 	if (vgic_cpu->lpis_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		old_propbaser = READ_ONCE(dist->propbaser);
 | |
| 		propbaser = old_propbaser;
 | |
| 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
 | |
| 		propbaser = vgic_sanitise_propbaser(propbaser);
 | |
| 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
 | |
| 			   propbaser) != old_propbaser);
 | |
| }
 | |
| 
 | |
| static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
 | |
| 					     gpa_t addr, unsigned int len)
 | |
| {
 | |
| 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 | |
| 	u64 value = vgic_cpu->pendbaser;
 | |
| 
 | |
| 	value &= ~GICR_PENDBASER_PTZ;
 | |
| 
 | |
| 	return extract_bytes(value, addr & 7, len);
 | |
| }
 | |
| 
 | |
| static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
 | |
| 				     gpa_t addr, unsigned int len,
 | |
| 				     unsigned long val)
 | |
| {
 | |
| 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 | |
| 	u64 old_pendbaser, pendbaser;
 | |
| 
 | |
| 	/* Storing a value with LPIs already enabled is undefined */
 | |
| 	if (vgic_cpu->lpis_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
 | |
| 		pendbaser = old_pendbaser;
 | |
| 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
 | |
| 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
 | |
| 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
 | |
| 			   pendbaser) != old_pendbaser);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
 | |
|  * redistributors, while SPIs are covered by registers in the distributor
 | |
|  * block. Trying to set private IRQs in this block gets ignored.
 | |
|  * We take some special care here to fix the calculation of the register
 | |
|  * offset.
 | |
|  */
 | |
| #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
 | |
| 	{								\
 | |
| 		.reg_offset = off,					\
 | |
| 		.bits_per_irq = bpi,					\
 | |
| 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
 | |
| 		.access_flags = acc,					\
 | |
| 		.read = vgic_mmio_read_raz,				\
 | |
| 		.write = vgic_mmio_write_wi,				\
 | |
| 	}, {								\
 | |
| 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
 | |
| 		.bits_per_irq = bpi,					\
 | |
| 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
 | |
| 		.access_flags = acc,					\
 | |
| 		.read = rd,						\
 | |
| 		.write = wr,						\
 | |
| 		.uaccess_read = ur,					\
 | |
| 		.uaccess_write = uw,					\
 | |
| 	}
 | |
| 
 | |
| static const struct vgic_register_region vgic_v3_dist_registers[] = {
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
 | |
| 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
 | |
| 		NULL, vgic_mmio_uaccess_write_v3_misc,
 | |
| 		16, VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
 | |
| 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
 | |
| 		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
 | |
| 		vgic_mmio_read_enable, vgic_mmio_write_senable,
 | |
| 		NULL, vgic_uaccess_write_senable, 1,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
 | |
| 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
 | |
| 	       NULL, vgic_uaccess_write_cenable, 1,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
 | |
| 		vgic_mmio_read_pending, vgic_mmio_write_spending,
 | |
| 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
 | |
| 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
 | |
| 		vgic_mmio_read_active, vgic_mmio_write_sactive,
 | |
| 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
 | |
| 		vgic_mmio_read_active, vgic_mmio_write_cactive,
 | |
| 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
 | |
| 		1, VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
 | |
| 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
 | |
| 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
 | |
| 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
 | |
| 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
 | |
| 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
 | |
| 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
 | |
| 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| };
 | |
| 
 | |
| static const struct vgic_register_region vgic_v3_rd_registers[] = {
 | |
| 	/* RD_base registers */
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
 | |
| 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
 | |
| 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
 | |
| 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
 | |
| 		NULL, vgic_mmio_uaccess_write_wi, 8,
 | |
| 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
 | |
| 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
 | |
| 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
 | |
| 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
 | |
| 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
 | |
| 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	/* SGI_base registers */
 | |
| 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
 | |
| 		vgic_mmio_read_group, vgic_mmio_write_group, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
 | |
| 		vgic_mmio_read_enable, vgic_mmio_write_senable,
 | |
| 		NULL, vgic_uaccess_write_senable, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
 | |
| 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
 | |
| 		NULL, vgic_uaccess_write_cenable, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
 | |
| 		vgic_mmio_read_pending, vgic_mmio_write_spending,
 | |
| 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
 | |
| 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
 | |
| 		vgic_mmio_read_active, vgic_mmio_write_sactive,
 | |
| 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
 | |
| 		vgic_mmio_read_active, vgic_mmio_write_cactive,
 | |
| 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
 | |
| 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
 | |
| 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
 | |
| 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
 | |
| 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 | |
| 		VGIC_ACCESS_32bit),
 | |
| };
 | |
| 
 | |
| unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
 | |
| {
 | |
| 	dev->regions = vgic_v3_dist_registers;
 | |
| 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 | |
| 
 | |
| 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
 | |
| 
 | |
| 	return SZ_64K;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vgic_register_redist_iodev - register a single redist iodev
 | |
|  * @vcpu:    The VCPU to which the redistributor belongs
 | |
|  *
 | |
|  * Register a KVM iodev for this VCPU's redistributor using the address
 | |
|  * provided.
 | |
|  *
 | |
|  * Return 0 on success, -ERRNO otherwise.
 | |
|  */
 | |
| int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	struct vgic_dist *vgic = &kvm->arch.vgic;
 | |
| 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 | |
| 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 | |
| 	struct vgic_redist_region *rdreg;
 | |
| 	gpa_t rd_base;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may be creating VCPUs before having set the base address for the
 | |
| 	 * redistributor region, in which case we will come back to this
 | |
| 	 * function for all VCPUs when the base address is set.  Just return
 | |
| 	 * without doing any work for now.
 | |
| 	 */
 | |
| 	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
 | |
| 	if (!rdreg)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!vgic_v3_check_base(kvm))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vgic_cpu->rdreg = rdreg;
 | |
| 	vgic_cpu->rdreg_index = rdreg->free_index;
 | |
| 
 | |
| 	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
 | |
| 
 | |
| 	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
 | |
| 	rd_dev->base_addr = rd_base;
 | |
| 	rd_dev->iodev_type = IODEV_REDIST;
 | |
| 	rd_dev->regions = vgic_v3_rd_registers;
 | |
| 	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 | |
| 	rd_dev->redist_vcpu = vcpu;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
 | |
| 				      2 * SZ_64K, &rd_dev->dev);
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	rdreg->free_index++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 | |
| 
 | |
| 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
 | |
| }
 | |
| 
 | |
| static int vgic_register_all_redist_iodevs(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long c;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	kvm_for_each_vcpu(c, vcpu, kvm) {
 | |
| 		ret = vgic_register_redist_iodev(vcpu);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		/* The current c failed, so iterate over the previous ones. */
 | |
| 		int i;
 | |
| 
 | |
| 		mutex_lock(&kvm->slots_lock);
 | |
| 		for (i = 0; i < c; i++) {
 | |
| 			vcpu = kvm_get_vcpu(kvm, i);
 | |
| 			vgic_unregister_redist_iodev(vcpu);
 | |
| 		}
 | |
| 		mutex_unlock(&kvm->slots_lock);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
 | |
|  *
 | |
|  * Performs various checks before inserting the rdist region in the list.
 | |
|  * Those tests depend on whether the size of the rdist region is known
 | |
|  * (ie. count != 0). The list is sorted by rdist region index.
 | |
|  *
 | |
|  * @kvm: kvm handle
 | |
|  * @index: redist region index
 | |
|  * @base: base of the new rdist region
 | |
|  * @count: number of redistributors the region is made of (0 in the old style
 | |
|  * single region, whose size is induced from the number of vcpus)
 | |
|  *
 | |
|  * Return 0 on success, < 0 otherwise
 | |
|  */
 | |
| static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
 | |
| 				       gpa_t base, uint32_t count)
 | |
| {
 | |
| 	struct vgic_dist *d = &kvm->arch.vgic;
 | |
| 	struct vgic_redist_region *rdreg;
 | |
| 	struct list_head *rd_regions = &d->rd_regions;
 | |
| 	int nr_vcpus = atomic_read(&kvm->online_vcpus);
 | |
| 	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
 | |
| 			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* cross the end of memory ? */
 | |
| 	if (base + size < base)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (list_empty(rd_regions)) {
 | |
| 		if (index != 0)
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		rdreg = list_last_entry(rd_regions,
 | |
| 					struct vgic_redist_region, list);
 | |
| 
 | |
| 		/* Don't mix single region and discrete redist regions */
 | |
| 		if (!count && rdreg->count)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!count)
 | |
| 			return -EEXIST;
 | |
| 
 | |
| 		if (index != rdreg->index + 1)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For legacy single-region redistributor regions (!count),
 | |
| 	 * check that the redistributor region does not overlap with the
 | |
| 	 * distributor's address space.
 | |
| 	 */
 | |
| 	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
 | |
| 		vgic_dist_overlap(kvm, base, size))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* collision with any other rdist region? */
 | |
| 	if (vgic_v3_rdist_overlap(kvm, base, size))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!rdreg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rdreg->base = VGIC_ADDR_UNDEF;
 | |
| 
 | |
| 	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
 | |
| 	if (ret)
 | |
| 		goto free;
 | |
| 
 | |
| 	rdreg->base = base;
 | |
| 	rdreg->count = count;
 | |
| 	rdreg->free_index = 0;
 | |
| 	rdreg->index = index;
 | |
| 
 | |
| 	list_add_tail(&rdreg->list, rd_regions);
 | |
| 	return 0;
 | |
| free:
 | |
| 	kfree(rdreg);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void vgic_v3_free_redist_region(struct kvm *kvm, struct vgic_redist_region *rdreg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long c;
 | |
| 
 | |
| 	/* Garbage collect the region */
 | |
| 	kvm_for_each_vcpu(c, vcpu, kvm) {
 | |
| 		if (vcpu->arch.vgic_cpu.rdreg == rdreg)
 | |
| 			vcpu->arch.vgic_cpu.rdreg = NULL;
 | |
| 	}
 | |
| 
 | |
| 	list_del(&rdreg->list);
 | |
| 	kfree(rdreg);
 | |
| }
 | |
| 
 | |
| int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register iodevs for each existing VCPU.  Adding more VCPUs
 | |
| 	 * afterwards will register the iodevs when needed.
 | |
| 	 */
 | |
| 	ret = vgic_register_all_redist_iodevs(kvm);
 | |
| 	if (ret) {
 | |
| 		struct vgic_redist_region *rdreg;
 | |
| 
 | |
| 		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
 | |
| 		vgic_v3_free_redist_region(kvm, rdreg);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
 | |
| {
 | |
| 	const struct vgic_register_region *region;
 | |
| 	struct vgic_io_device iodev;
 | |
| 	struct vgic_reg_attr reg_attr;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	gpa_t addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = vgic_v3_parse_attr(dev, attr, ®_attr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	vcpu = reg_attr.vcpu;
 | |
| 	addr = reg_attr.addr;
 | |
| 
 | |
| 	switch (attr->group) {
 | |
| 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
 | |
| 		iodev.regions = vgic_v3_dist_registers;
 | |
| 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 | |
| 		iodev.base_addr = 0;
 | |
| 		break;
 | |
| 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
 | |
| 		iodev.regions = vgic_v3_rd_registers;
 | |
| 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
 | |
| 		iodev.base_addr = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
 | |
| 		u64 reg, id;
 | |
| 
 | |
| 		id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
 | |
| 		return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, ®);
 | |
| 	}
 | |
| 	default:
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	/* We only support aligned 32-bit accesses. */
 | |
| 	if (addr & 3)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
 | |
| 	if (!region)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| /*
 | |
|  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 | |
|  * generation register ICC_SGI1R_EL1) with a given VCPU.
 | |
|  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 | |
|  * return -1.
 | |
|  */
 | |
| static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long affinity;
 | |
| 	int level0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Split the current VCPU's MPIDR into affinity level 0 and the
 | |
| 	 * rest as this is what we have to compare against.
 | |
| 	 */
 | |
| 	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
 | |
| 	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
 | |
| 	affinity &= ~MPIDR_LEVEL_MASK;
 | |
| 
 | |
| 	/* bail out if the upper three levels don't match */
 | |
| 	if (sgi_aff != affinity)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Is this VCPU's bit set in the mask ? */
 | |
| 	if (!(sgi_cpu_mask & BIT(level0)))
 | |
| 		return -1;
 | |
| 
 | |
| 	return level0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
 | |
|  * so provide a wrapper to use the existing defines to isolate a certain
 | |
|  * affinity level.
 | |
|  */
 | |
| #define SGI_AFFINITY_LEVEL(reg, level) \
 | |
| 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
 | |
| 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
 | |
| 
 | |
| /**
 | |
|  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 | |
|  * @vcpu: The VCPU requesting a SGI
 | |
|  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
 | |
|  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
 | |
|  *
 | |
|  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 | |
|  * This will trap in sys_regs.c and call this function.
 | |
|  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 | |
|  * target processors as well as a bitmask of 16 Aff0 CPUs.
 | |
|  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 | |
|  * check for matching ones. If this bit is set, we signal all, but not the
 | |
|  * calling VCPU.
 | |
|  */
 | |
| void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	struct kvm_vcpu *c_vcpu;
 | |
| 	u16 target_cpus;
 | |
| 	u64 mpidr;
 | |
| 	int sgi;
 | |
| 	int vcpu_id = vcpu->vcpu_id;
 | |
| 	bool broadcast;
 | |
| 	unsigned long c, flags;
 | |
| 
 | |
| 	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
 | |
| 	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
 | |
| 	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
 | |
| 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
 | |
| 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
 | |
| 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * We iterate over all VCPUs to find the MPIDRs matching the request.
 | |
| 	 * If we have handled one CPU, we clear its bit to detect early
 | |
| 	 * if we are already finished. This avoids iterating through all
 | |
| 	 * VCPUs when most of the times we just signal a single VCPU.
 | |
| 	 */
 | |
| 	kvm_for_each_vcpu(c, c_vcpu, kvm) {
 | |
| 		struct vgic_irq *irq;
 | |
| 
 | |
| 		/* Exit early if we have dealt with all requested CPUs */
 | |
| 		if (!broadcast && target_cpus == 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Don't signal the calling VCPU */
 | |
| 		if (broadcast && c == vcpu_id)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!broadcast) {
 | |
| 			int level0;
 | |
| 
 | |
| 			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
 | |
| 			if (level0 == -1)
 | |
| 				continue;
 | |
| 
 | |
| 			/* remove this matching VCPU from the mask */
 | |
| 			target_cpus &= ~BIT(level0);
 | |
| 		}
 | |
| 
 | |
| 		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * An access targetting Group0 SGIs can only generate
 | |
| 		 * those, while an access targetting Group1 SGIs can
 | |
| 		 * generate interrupts of either group.
 | |
| 		 */
 | |
| 		if (!irq->group || allow_group1) {
 | |
| 			if (!irq->hw) {
 | |
| 				irq->pending_latch = true;
 | |
| 				vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 | |
| 			} else {
 | |
| 				/* HW SGI? Ask the GIC to inject it */
 | |
| 				int err;
 | |
| 				err = irq_set_irqchip_state(irq->host_irq,
 | |
| 							    IRQCHIP_STATE_PENDING,
 | |
| 							    true);
 | |
| 				WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
 | |
| 				raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 | |
| 			}
 | |
| 		} else {
 | |
| 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		vgic_put_irq(vcpu->kvm, irq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 | |
| 			 int offset, u32 *val)
 | |
| {
 | |
| 	struct vgic_io_device dev = {
 | |
| 		.regions = vgic_v3_dist_registers,
 | |
| 		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
 | |
| 	};
 | |
| 
 | |
| 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
 | |
| }
 | |
| 
 | |
| int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 | |
| 			   int offset, u32 *val)
 | |
| {
 | |
| 	struct vgic_io_device rd_dev = {
 | |
| 		.regions = vgic_v3_rd_registers,
 | |
| 		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
 | |
| 	};
 | |
| 
 | |
| 	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
 | |
| }
 | |
| 
 | |
| int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 | |
| 				    u32 intid, u64 *val)
 | |
| {
 | |
| 	if (intid % 32)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (is_write)
 | |
| 		vgic_write_irq_line_level_info(vcpu, intid, *val);
 | |
| 	else
 | |
| 		*val = vgic_read_irq_line_level_info(vcpu, intid);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |