1150 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1150 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2012-2015 - ARM Ltd
 | |
|  * Author: Marc Zyngier <marc.zyngier@arm.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/irqchip/arm-gic-v3.h>
 | |
| #include <linux/kvm_host.h>
 | |
| 
 | |
| #include <asm/kvm_emulate.h>
 | |
| #include <asm/kvm_hyp.h>
 | |
| #include <asm/kvm_mmu.h>
 | |
| 
 | |
| #define vtr_to_max_lr_idx(v)		((v) & 0xf)
 | |
| #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
 | |
| #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
 | |
| 
 | |
| static u64 __gic_v3_get_lr(unsigned int lr)
 | |
| {
 | |
| 	switch (lr & 0xf) {
 | |
| 	case 0:
 | |
| 		return read_gicreg(ICH_LR0_EL2);
 | |
| 	case 1:
 | |
| 		return read_gicreg(ICH_LR1_EL2);
 | |
| 	case 2:
 | |
| 		return read_gicreg(ICH_LR2_EL2);
 | |
| 	case 3:
 | |
| 		return read_gicreg(ICH_LR3_EL2);
 | |
| 	case 4:
 | |
| 		return read_gicreg(ICH_LR4_EL2);
 | |
| 	case 5:
 | |
| 		return read_gicreg(ICH_LR5_EL2);
 | |
| 	case 6:
 | |
| 		return read_gicreg(ICH_LR6_EL2);
 | |
| 	case 7:
 | |
| 		return read_gicreg(ICH_LR7_EL2);
 | |
| 	case 8:
 | |
| 		return read_gicreg(ICH_LR8_EL2);
 | |
| 	case 9:
 | |
| 		return read_gicreg(ICH_LR9_EL2);
 | |
| 	case 10:
 | |
| 		return read_gicreg(ICH_LR10_EL2);
 | |
| 	case 11:
 | |
| 		return read_gicreg(ICH_LR11_EL2);
 | |
| 	case 12:
 | |
| 		return read_gicreg(ICH_LR12_EL2);
 | |
| 	case 13:
 | |
| 		return read_gicreg(ICH_LR13_EL2);
 | |
| 	case 14:
 | |
| 		return read_gicreg(ICH_LR14_EL2);
 | |
| 	case 15:
 | |
| 		return read_gicreg(ICH_LR15_EL2);
 | |
| 	}
 | |
| 
 | |
| 	unreachable();
 | |
| }
 | |
| 
 | |
| static void __gic_v3_set_lr(u64 val, int lr)
 | |
| {
 | |
| 	switch (lr & 0xf) {
 | |
| 	case 0:
 | |
| 		write_gicreg(val, ICH_LR0_EL2);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		write_gicreg(val, ICH_LR1_EL2);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		write_gicreg(val, ICH_LR2_EL2);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		write_gicreg(val, ICH_LR3_EL2);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		write_gicreg(val, ICH_LR4_EL2);
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		write_gicreg(val, ICH_LR5_EL2);
 | |
| 		break;
 | |
| 	case 6:
 | |
| 		write_gicreg(val, ICH_LR6_EL2);
 | |
| 		break;
 | |
| 	case 7:
 | |
| 		write_gicreg(val, ICH_LR7_EL2);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		write_gicreg(val, ICH_LR8_EL2);
 | |
| 		break;
 | |
| 	case 9:
 | |
| 		write_gicreg(val, ICH_LR9_EL2);
 | |
| 		break;
 | |
| 	case 10:
 | |
| 		write_gicreg(val, ICH_LR10_EL2);
 | |
| 		break;
 | |
| 	case 11:
 | |
| 		write_gicreg(val, ICH_LR11_EL2);
 | |
| 		break;
 | |
| 	case 12:
 | |
| 		write_gicreg(val, ICH_LR12_EL2);
 | |
| 		break;
 | |
| 	case 13:
 | |
| 		write_gicreg(val, ICH_LR13_EL2);
 | |
| 		break;
 | |
| 	case 14:
 | |
| 		write_gicreg(val, ICH_LR14_EL2);
 | |
| 		break;
 | |
| 	case 15:
 | |
| 		write_gicreg(val, ICH_LR15_EL2);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_ap0rn(u32 val, int n)
 | |
| {
 | |
| 	switch (n) {
 | |
| 	case 0:
 | |
| 		write_gicreg(val, ICH_AP0R0_EL2);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		write_gicreg(val, ICH_AP0R1_EL2);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		write_gicreg(val, ICH_AP0R2_EL2);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		write_gicreg(val, ICH_AP0R3_EL2);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_ap1rn(u32 val, int n)
 | |
| {
 | |
| 	switch (n) {
 | |
| 	case 0:
 | |
| 		write_gicreg(val, ICH_AP1R0_EL2);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		write_gicreg(val, ICH_AP1R1_EL2);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		write_gicreg(val, ICH_AP1R2_EL2);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		write_gicreg(val, ICH_AP1R3_EL2);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 __vgic_v3_read_ap0rn(int n)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	switch (n) {
 | |
| 	case 0:
 | |
| 		val = read_gicreg(ICH_AP0R0_EL2);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		val = read_gicreg(ICH_AP0R1_EL2);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		val = read_gicreg(ICH_AP0R2_EL2);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		val = read_gicreg(ICH_AP0R3_EL2);
 | |
| 		break;
 | |
| 	default:
 | |
| 		unreachable();
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static u32 __vgic_v3_read_ap1rn(int n)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	switch (n) {
 | |
| 	case 0:
 | |
| 		val = read_gicreg(ICH_AP1R0_EL2);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		val = read_gicreg(ICH_AP1R1_EL2);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		val = read_gicreg(ICH_AP1R2_EL2);
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		val = read_gicreg(ICH_AP1R3_EL2);
 | |
| 		break;
 | |
| 	default:
 | |
| 		unreachable();
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
 | |
| {
 | |
| 	u64 used_lrs = cpu_if->used_lrs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure stores to the GIC via the memory mapped interface
 | |
| 	 * are now visible to the system register interface when reading the
 | |
| 	 * LRs, and when reading back the VMCR on non-VHE systems.
 | |
| 	 */
 | |
| 	if (used_lrs || !has_vhe()) {
 | |
| 		if (!cpu_if->vgic_sre) {
 | |
| 			dsb(sy);
 | |
| 			isb();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (used_lrs || cpu_if->its_vpe.its_vm) {
 | |
| 		int i;
 | |
| 		u32 elrsr;
 | |
| 
 | |
| 		elrsr = read_gicreg(ICH_ELRSR_EL2);
 | |
| 
 | |
| 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
 | |
| 
 | |
| 		for (i = 0; i < used_lrs; i++) {
 | |
| 			if (elrsr & (1 << i))
 | |
| 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
 | |
| 			else
 | |
| 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
 | |
| 
 | |
| 			__gic_v3_set_lr(0, i);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
 | |
| {
 | |
| 	u64 used_lrs = cpu_if->used_lrs;
 | |
| 	int i;
 | |
| 
 | |
| 	if (used_lrs || cpu_if->its_vpe.its_vm) {
 | |
| 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
 | |
| 
 | |
| 		for (i = 0; i < used_lrs; i++)
 | |
| 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
 | |
| 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
 | |
| 	 * reached the (re)distributors. This ensure the guest will read the
 | |
| 	 * correct values from the memory-mapped interface.
 | |
| 	 */
 | |
| 	if (used_lrs || !has_vhe()) {
 | |
| 		if (!cpu_if->vgic_sre) {
 | |
| 			isb();
 | |
| 			dsb(sy);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
 | |
| {
 | |
| 	/*
 | |
| 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
 | |
| 	 * Group0 interrupt (as generated in GICv2 mode) to be
 | |
| 	 * delivered as a FIQ to the guest, with potentially fatal
 | |
| 	 * consequences. So we must make sure that ICC_SRE_EL1 has
 | |
| 	 * been actually programmed with the value we want before
 | |
| 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
 | |
| 	 * particular.  This logic must be called before
 | |
| 	 * __vgic_v3_restore_state().
 | |
| 	 */
 | |
| 	if (!cpu_if->vgic_sre) {
 | |
| 		write_gicreg(0, ICC_SRE_EL1);
 | |
| 		isb();
 | |
| 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
 | |
| 
 | |
| 
 | |
| 		if (has_vhe()) {
 | |
| 			/*
 | |
| 			 * Ensure that the write to the VMCR will have reached
 | |
| 			 * the (re)distributors. This ensure the guest will
 | |
| 			 * read the correct values from the memory-mapped
 | |
| 			 * interface.
 | |
| 			 */
 | |
| 			isb();
 | |
| 			dsb(sy);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent the guest from touching the GIC system registers if
 | |
| 	 * SRE isn't enabled for GICv3 emulation.
 | |
| 	 */
 | |
| 	write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
 | |
| 		     ICC_SRE_EL2);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to trap system registers, we must write
 | |
| 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
 | |
| 	 * injected,
 | |
| 	 */
 | |
| 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
 | |
| 	    cpu_if->its_vpe.its_vm)
 | |
| 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
 | |
| }
 | |
| 
 | |
| void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	if (!cpu_if->vgic_sre) {
 | |
| 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
 | |
| 	}
 | |
| 
 | |
| 	val = read_gicreg(ICC_SRE_EL2);
 | |
| 	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
 | |
| 
 | |
| 	if (!cpu_if->vgic_sre) {
 | |
| 		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
 | |
| 		isb();
 | |
| 		write_gicreg(1, ICC_SRE_EL1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we were trapping system registers, we enabled the VGIC even if
 | |
| 	 * no interrupts were being injected, and we disable it again here.
 | |
| 	 */
 | |
| 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
 | |
| 	    cpu_if->its_vpe.its_vm)
 | |
| 		write_gicreg(0, ICH_HCR_EL2);
 | |
| }
 | |
| 
 | |
| void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
 | |
| {
 | |
| 	u64 val;
 | |
| 	u32 nr_pre_bits;
 | |
| 
 | |
| 	val = read_gicreg(ICH_VTR_EL2);
 | |
| 	nr_pre_bits = vtr_to_nr_pre_bits(val);
 | |
| 
 | |
| 	switch (nr_pre_bits) {
 | |
| 	case 7:
 | |
| 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
 | |
| 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
 | |
| 		/* Fall through */
 | |
| 	case 6:
 | |
| 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
 | |
| 		/* Fall through */
 | |
| 	default:
 | |
| 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
 | |
| 	}
 | |
| 
 | |
| 	switch (nr_pre_bits) {
 | |
| 	case 7:
 | |
| 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
 | |
| 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
 | |
| 		/* Fall through */
 | |
| 	case 6:
 | |
| 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
 | |
| 		/* Fall through */
 | |
| 	default:
 | |
| 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
 | |
| {
 | |
| 	u64 val;
 | |
| 	u32 nr_pre_bits;
 | |
| 
 | |
| 	val = read_gicreg(ICH_VTR_EL2);
 | |
| 	nr_pre_bits = vtr_to_nr_pre_bits(val);
 | |
| 
 | |
| 	switch (nr_pre_bits) {
 | |
| 	case 7:
 | |
| 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
 | |
| 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
 | |
| 		/* Fall through */
 | |
| 	case 6:
 | |
| 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
 | |
| 		/* Fall through */
 | |
| 	default:
 | |
| 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
 | |
| 	}
 | |
| 
 | |
| 	switch (nr_pre_bits) {
 | |
| 	case 7:
 | |
| 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
 | |
| 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
 | |
| 		/* Fall through */
 | |
| 	case 6:
 | |
| 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
 | |
| 		/* Fall through */
 | |
| 	default:
 | |
| 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __vgic_v3_init_lrs(void)
 | |
| {
 | |
| 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i <= max_lr_idx; i++)
 | |
| 		__gic_v3_set_lr(0, i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the GIC CPU configuration:
 | |
|  * - [31:0]  ICH_VTR_EL2
 | |
|  * - [62:32] RES0
 | |
|  * - [63]    MMIO (GICv2) capable
 | |
|  */
 | |
| u64 __vgic_v3_get_gic_config(void)
 | |
| {
 | |
| 	u64 val, sre = read_gicreg(ICC_SRE_EL1);
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * To check whether we have a MMIO-based (GICv2 compatible)
 | |
| 	 * CPU interface, we need to disable the system register
 | |
| 	 * view. To do that safely, we have to prevent any interrupt
 | |
| 	 * from firing (which would be deadly).
 | |
| 	 *
 | |
| 	 * Note that this only makes sense on VHE, as interrupts are
 | |
| 	 * already masked for nVHE as part of the exception entry to
 | |
| 	 * EL2.
 | |
| 	 */
 | |
| 	if (has_vhe())
 | |
| 		flags = local_daif_save();
 | |
| 
 | |
| 	/*
 | |
| 	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
 | |
| 	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
 | |
| 	 * interrupt overrides must be set. You've got to love this.
 | |
| 	 */
 | |
| 	sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO);
 | |
| 	isb();
 | |
| 	write_gicreg(0, ICC_SRE_EL1);
 | |
| 	isb();
 | |
| 
 | |
| 	val = read_gicreg(ICC_SRE_EL1);
 | |
| 
 | |
| 	write_gicreg(sre, ICC_SRE_EL1);
 | |
| 	isb();
 | |
| 	sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0);
 | |
| 	isb();
 | |
| 
 | |
| 	if (has_vhe())
 | |
| 		local_daif_restore(flags);
 | |
| 
 | |
| 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
 | |
| 	val |= read_gicreg(ICH_VTR_EL2);
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| u64 __vgic_v3_read_vmcr(void)
 | |
| {
 | |
| 	return read_gicreg(ICH_VMCR_EL2);
 | |
| }
 | |
| 
 | |
| void __vgic_v3_write_vmcr(u32 vmcr)
 | |
| {
 | |
| 	write_gicreg(vmcr, ICH_VMCR_EL2);
 | |
| }
 | |
| 
 | |
| static int __vgic_v3_bpr_min(void)
 | |
| {
 | |
| 	/* See Pseudocode for VPriorityGroup */
 | |
| 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
 | |
| }
 | |
| 
 | |
| static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 esr = kvm_vcpu_get_esr(vcpu);
 | |
| 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
 | |
| 
 | |
| 	return crm != 8;
 | |
| }
 | |
| 
 | |
| #define GICv3_IDLE_PRIORITY	0xff
 | |
| 
 | |
| static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
 | |
| 					 u64 *lr_val)
 | |
| {
 | |
| 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
 | |
| 	u8 priority = GICv3_IDLE_PRIORITY;
 | |
| 	int i, lr = -1;
 | |
| 
 | |
| 	for (i = 0; i < used_lrs; i++) {
 | |
| 		u64 val = __gic_v3_get_lr(i);
 | |
| 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
 | |
| 
 | |
| 		/* Not pending in the state? */
 | |
| 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Group-0 interrupt, but Group-0 disabled? */
 | |
| 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Group-1 interrupt, but Group-1 disabled? */
 | |
| 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Not the highest priority? */
 | |
| 		if (lr_prio >= priority)
 | |
| 			continue;
 | |
| 
 | |
| 		/* This is a candidate */
 | |
| 		priority = lr_prio;
 | |
| 		*lr_val = val;
 | |
| 		lr = i;
 | |
| 	}
 | |
| 
 | |
| 	if (lr == -1)
 | |
| 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
 | |
| 
 | |
| 	return lr;
 | |
| }
 | |
| 
 | |
| static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
 | |
| 				    u64 *lr_val)
 | |
| {
 | |
| 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < used_lrs; i++) {
 | |
| 		u64 val = __gic_v3_get_lr(i);
 | |
| 
 | |
| 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
 | |
| 		    (val & ICH_LR_ACTIVE_BIT)) {
 | |
| 			*lr_val = val;
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int __vgic_v3_get_highest_active_priority(void)
 | |
| {
 | |
| 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
 | |
| 	u32 hap = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_apr_regs; i++) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		/*
 | |
| 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
 | |
| 		 * contain the active priority levels for this VCPU
 | |
| 		 * for the maximum number of supported priority
 | |
| 		 * levels, and we return the full priority level only
 | |
| 		 * if the BPR is programmed to its minimum, otherwise
 | |
| 		 * we return a combination of the priority level and
 | |
| 		 * subpriority, as determined by the setting of the
 | |
| 		 * BPR, but without the full subpriority.
 | |
| 		 */
 | |
| 		val  = __vgic_v3_read_ap0rn(i);
 | |
| 		val |= __vgic_v3_read_ap1rn(i);
 | |
| 		if (!val) {
 | |
| 			hap += 32;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
 | |
| 	}
 | |
| 
 | |
| 	return GICv3_IDLE_PRIORITY;
 | |
| }
 | |
| 
 | |
| static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
 | |
| {
 | |
| 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
 | |
| }
 | |
| 
 | |
| static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
 | |
| {
 | |
| 	unsigned int bpr;
 | |
| 
 | |
| 	if (vmcr & ICH_VMCR_CBPR_MASK) {
 | |
| 		bpr = __vgic_v3_get_bpr0(vmcr);
 | |
| 		if (bpr < 7)
 | |
| 			bpr++;
 | |
| 	} else {
 | |
| 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	return bpr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a priority to a preemption level, taking the relevant BPR
 | |
|  * into account by zeroing the sub-priority bits.
 | |
|  */
 | |
| static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
 | |
| {
 | |
| 	unsigned int bpr;
 | |
| 
 | |
| 	if (!grp)
 | |
| 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
 | |
| 	else
 | |
| 		bpr = __vgic_v3_get_bpr1(vmcr);
 | |
| 
 | |
| 	return pri & (GENMASK(7, 0) << bpr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The priority value is independent of any of the BPR values, so we
 | |
|  * normalize it using the minimal BPR value. This guarantees that no
 | |
|  * matter what the guest does with its BPR, we can always set/get the
 | |
|  * same value of a priority.
 | |
|  */
 | |
| static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
 | |
| {
 | |
| 	u8 pre, ap;
 | |
| 	u32 val;
 | |
| 	int apr;
 | |
| 
 | |
| 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
 | |
| 	ap = pre >> __vgic_v3_bpr_min();
 | |
| 	apr = ap / 32;
 | |
| 
 | |
| 	if (!grp) {
 | |
| 		val = __vgic_v3_read_ap0rn(apr);
 | |
| 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
 | |
| 	} else {
 | |
| 		val = __vgic_v3_read_ap1rn(apr);
 | |
| 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __vgic_v3_clear_highest_active_priority(void)
 | |
| {
 | |
| 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
 | |
| 	u32 hap = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_apr_regs; i++) {
 | |
| 		u32 ap0, ap1;
 | |
| 		int c0, c1;
 | |
| 
 | |
| 		ap0 = __vgic_v3_read_ap0rn(i);
 | |
| 		ap1 = __vgic_v3_read_ap1rn(i);
 | |
| 		if (!ap0 && !ap1) {
 | |
| 			hap += 32;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		c0 = ap0 ? __ffs(ap0) : 32;
 | |
| 		c1 = ap1 ? __ffs(ap1) : 32;
 | |
| 
 | |
| 		/* Always clear the LSB, which is the highest priority */
 | |
| 		if (c0 < c1) {
 | |
| 			ap0 &= ~BIT(c0);
 | |
| 			__vgic_v3_write_ap0rn(ap0, i);
 | |
| 			hap += c0;
 | |
| 		} else {
 | |
| 			ap1 &= ~BIT(c1);
 | |
| 			__vgic_v3_write_ap1rn(ap1, i);
 | |
| 			hap += c1;
 | |
| 		}
 | |
| 
 | |
| 		/* Rescale to 8 bits of priority */
 | |
| 		return hap << __vgic_v3_bpr_min();
 | |
| 	}
 | |
| 
 | |
| 	return GICv3_IDLE_PRIORITY;
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u64 lr_val;
 | |
| 	u8 lr_prio, pmr;
 | |
| 	int lr, grp;
 | |
| 
 | |
| 	grp = __vgic_v3_get_group(vcpu);
 | |
| 
 | |
| 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
 | |
| 	if (lr < 0)
 | |
| 		goto spurious;
 | |
| 
 | |
| 	if (grp != !!(lr_val & ICH_LR_GROUP))
 | |
| 		goto spurious;
 | |
| 
 | |
| 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
 | |
| 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
 | |
| 	if (pmr <= lr_prio)
 | |
| 		goto spurious;
 | |
| 
 | |
| 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
 | |
| 		goto spurious;
 | |
| 
 | |
| 	lr_val &= ~ICH_LR_STATE;
 | |
| 	lr_val |= ICH_LR_ACTIVE_BIT;
 | |
| 	__gic_v3_set_lr(lr_val, lr);
 | |
| 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
 | |
| 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
 | |
| 	return;
 | |
| 
 | |
| spurious:
 | |
| 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
 | |
| {
 | |
| 	lr_val &= ~ICH_LR_ACTIVE_BIT;
 | |
| 	if (lr_val & ICH_LR_HW) {
 | |
| 		u32 pid;
 | |
| 
 | |
| 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
 | |
| 		gic_write_dir(pid);
 | |
| 	}
 | |
| 
 | |
| 	__gic_v3_set_lr(lr_val, lr);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_bump_eoicount(void)
 | |
| {
 | |
| 	u32 hcr;
 | |
| 
 | |
| 	hcr = read_gicreg(ICH_HCR_EL2);
 | |
| 	hcr += 1 << ICH_HCR_EOIcount_SHIFT;
 | |
| 	write_gicreg(hcr, ICH_HCR_EL2);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u32 vid = vcpu_get_reg(vcpu, rt);
 | |
| 	u64 lr_val;
 | |
| 	int lr;
 | |
| 
 | |
| 	/* EOImode == 0, nothing to be done here */
 | |
| 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
 | |
| 		return;
 | |
| 
 | |
| 	/* No deactivate to be performed on an LPI */
 | |
| 	if (vid >= VGIC_MIN_LPI)
 | |
| 		return;
 | |
| 
 | |
| 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
 | |
| 	if (lr == -1) {
 | |
| 		__vgic_v3_bump_eoicount();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	__vgic_v3_clear_active_lr(lr, lr_val);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u32 vid = vcpu_get_reg(vcpu, rt);
 | |
| 	u64 lr_val;
 | |
| 	u8 lr_prio, act_prio;
 | |
| 	int lr, grp;
 | |
| 
 | |
| 	grp = __vgic_v3_get_group(vcpu);
 | |
| 
 | |
| 	/* Drop priority in any case */
 | |
| 	act_prio = __vgic_v3_clear_highest_active_priority();
 | |
| 
 | |
| 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
 | |
| 	if (lr == -1) {
 | |
| 		/* Do not bump EOIcount for LPIs that aren't in the LRs */
 | |
| 		if (!(vid >= VGIC_MIN_LPI))
 | |
| 			__vgic_v3_bump_eoicount();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* EOImode == 1 and not an LPI, nothing to be done here */
 | |
| 	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
 | |
| 		return;
 | |
| 
 | |
| 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
 | |
| 
 | |
| 	/* If priorities or group do not match, the guest has fscked-up. */
 | |
| 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
 | |
| 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
 | |
| 		return;
 | |
| 
 | |
| 	/* Let's now perform the deactivation */
 | |
| 	__vgic_v3_clear_active_lr(lr, lr_val);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u64 val = vcpu_get_reg(vcpu, rt);
 | |
| 
 | |
| 	if (val & 1)
 | |
| 		vmcr |= ICH_VMCR_ENG0_MASK;
 | |
| 	else
 | |
| 		vmcr &= ~ICH_VMCR_ENG0_MASK;
 | |
| 
 | |
| 	__vgic_v3_write_vmcr(vmcr);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u64 val = vcpu_get_reg(vcpu, rt);
 | |
| 
 | |
| 	if (val & 1)
 | |
| 		vmcr |= ICH_VMCR_ENG1_MASK;
 | |
| 	else
 | |
| 		vmcr &= ~ICH_VMCR_ENG1_MASK;
 | |
| 
 | |
| 	__vgic_v3_write_vmcr(vmcr);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u64 val = vcpu_get_reg(vcpu, rt);
 | |
| 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
 | |
| 
 | |
| 	/* Enforce BPR limiting */
 | |
| 	if (val < bpr_min)
 | |
| 		val = bpr_min;
 | |
| 
 | |
| 	val <<= ICH_VMCR_BPR0_SHIFT;
 | |
| 	val &= ICH_VMCR_BPR0_MASK;
 | |
| 	vmcr &= ~ICH_VMCR_BPR0_MASK;
 | |
| 	vmcr |= val;
 | |
| 
 | |
| 	__vgic_v3_write_vmcr(vmcr);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u64 val = vcpu_get_reg(vcpu, rt);
 | |
| 	u8 bpr_min = __vgic_v3_bpr_min();
 | |
| 
 | |
| 	if (vmcr & ICH_VMCR_CBPR_MASK)
 | |
| 		return;
 | |
| 
 | |
| 	/* Enforce BPR limiting */
 | |
| 	if (val < bpr_min)
 | |
| 		val = bpr_min;
 | |
| 
 | |
| 	val <<= ICH_VMCR_BPR1_SHIFT;
 | |
| 	val &= ICH_VMCR_BPR1_MASK;
 | |
| 	vmcr &= ~ICH_VMCR_BPR1_MASK;
 | |
| 	vmcr |= val;
 | |
| 
 | |
| 	__vgic_v3_write_vmcr(vmcr);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (!__vgic_v3_get_group(vcpu))
 | |
| 		val = __vgic_v3_read_ap0rn(n);
 | |
| 	else
 | |
| 		val = __vgic_v3_read_ap1rn(n);
 | |
| 
 | |
| 	vcpu_set_reg(vcpu, rt, val);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
 | |
| {
 | |
| 	u32 val = vcpu_get_reg(vcpu, rt);
 | |
| 
 | |
| 	if (!__vgic_v3_get_group(vcpu))
 | |
| 		__vgic_v3_write_ap0rn(val, n);
 | |
| 	else
 | |
| 		__vgic_v3_write_ap1rn(val, n);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
 | |
| 					    u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_read_apxrn(vcpu, rt, 0);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
 | |
| 					    u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_read_apxrn(vcpu, rt, 1);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_read_apxrn(vcpu, rt, 2);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_read_apxrn(vcpu, rt, 3);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_write_apxrn(vcpu, rt, 0);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_write_apxrn(vcpu, rt, 1);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_write_apxrn(vcpu, rt, 2);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	__vgic_v3_write_apxrn(vcpu, rt, 3);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u64 lr_val;
 | |
| 	int lr, lr_grp, grp;
 | |
| 
 | |
| 	grp = __vgic_v3_get_group(vcpu);
 | |
| 
 | |
| 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
 | |
| 	if (lr == -1)
 | |
| 		goto spurious;
 | |
| 
 | |
| 	lr_grp = !!(lr_val & ICH_LR_GROUP);
 | |
| 	if (lr_grp != grp)
 | |
| 		lr_val = ICC_IAR1_EL1_SPURIOUS;
 | |
| 
 | |
| spurious:
 | |
| 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	vmcr &= ICH_VMCR_PMR_MASK;
 | |
| 	vmcr >>= ICH_VMCR_PMR_SHIFT;
 | |
| 	vcpu_set_reg(vcpu, rt, vmcr);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u32 val = vcpu_get_reg(vcpu, rt);
 | |
| 
 | |
| 	val <<= ICH_VMCR_PMR_SHIFT;
 | |
| 	val &= ICH_VMCR_PMR_MASK;
 | |
| 	vmcr &= ~ICH_VMCR_PMR_MASK;
 | |
| 	vmcr |= val;
 | |
| 
 | |
| 	write_gicreg(vmcr, ICH_VMCR_EL2);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u32 val = __vgic_v3_get_highest_active_priority();
 | |
| 	vcpu_set_reg(vcpu, rt, val);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u32 vtr, val;
 | |
| 
 | |
| 	vtr = read_gicreg(ICH_VTR_EL2);
 | |
| 	/* PRIbits */
 | |
| 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
 | |
| 	/* IDbits */
 | |
| 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
 | |
| 	/* A3V */
 | |
| 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
 | |
| 	/* EOImode */
 | |
| 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
 | |
| 	/* CBPR */
 | |
| 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
 | |
| 
 | |
| 	vcpu_set_reg(vcpu, rt, val);
 | |
| }
 | |
| 
 | |
| static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
 | |
| {
 | |
| 	u32 val = vcpu_get_reg(vcpu, rt);
 | |
| 
 | |
| 	if (val & ICC_CTLR_EL1_CBPR_MASK)
 | |
| 		vmcr |= ICH_VMCR_CBPR_MASK;
 | |
| 	else
 | |
| 		vmcr &= ~ICH_VMCR_CBPR_MASK;
 | |
| 
 | |
| 	if (val & ICC_CTLR_EL1_EOImode_MASK)
 | |
| 		vmcr |= ICH_VMCR_EOIM_MASK;
 | |
| 	else
 | |
| 		vmcr &= ~ICH_VMCR_EOIM_MASK;
 | |
| 
 | |
| 	write_gicreg(vmcr, ICH_VMCR_EL2);
 | |
| }
 | |
| 
 | |
| int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int rt;
 | |
| 	u32 esr;
 | |
| 	u32 vmcr;
 | |
| 	void (*fn)(struct kvm_vcpu *, u32, int);
 | |
| 	bool is_read;
 | |
| 	u32 sysreg;
 | |
| 
 | |
| 	esr = kvm_vcpu_get_esr(vcpu);
 | |
| 	if (vcpu_mode_is_32bit(vcpu)) {
 | |
| 		if (!kvm_condition_valid(vcpu)) {
 | |
| 			__kvm_skip_instr(vcpu);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		sysreg = esr_cp15_to_sysreg(esr);
 | |
| 	} else {
 | |
| 		sysreg = esr_sys64_to_sysreg(esr);
 | |
| 	}
 | |
| 
 | |
| 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
 | |
| 
 | |
| 	switch (sysreg) {
 | |
| 	case SYS_ICC_IAR0_EL1:
 | |
| 	case SYS_ICC_IAR1_EL1:
 | |
| 		if (unlikely(!is_read))
 | |
| 			return 0;
 | |
| 		fn = __vgic_v3_read_iar;
 | |
| 		break;
 | |
| 	case SYS_ICC_EOIR0_EL1:
 | |
| 	case SYS_ICC_EOIR1_EL1:
 | |
| 		if (unlikely(is_read))
 | |
| 			return 0;
 | |
| 		fn = __vgic_v3_write_eoir;
 | |
| 		break;
 | |
| 	case SYS_ICC_IGRPEN1_EL1:
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_igrpen1;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_igrpen1;
 | |
| 		break;
 | |
| 	case SYS_ICC_BPR1_EL1:
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_bpr1;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_bpr1;
 | |
| 		break;
 | |
| 	case SYS_ICC_AP0Rn_EL1(0):
 | |
| 	case SYS_ICC_AP1Rn_EL1(0):
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_apxr0;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_apxr0;
 | |
| 		break;
 | |
| 	case SYS_ICC_AP0Rn_EL1(1):
 | |
| 	case SYS_ICC_AP1Rn_EL1(1):
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_apxr1;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_apxr1;
 | |
| 		break;
 | |
| 	case SYS_ICC_AP0Rn_EL1(2):
 | |
| 	case SYS_ICC_AP1Rn_EL1(2):
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_apxr2;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_apxr2;
 | |
| 		break;
 | |
| 	case SYS_ICC_AP0Rn_EL1(3):
 | |
| 	case SYS_ICC_AP1Rn_EL1(3):
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_apxr3;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_apxr3;
 | |
| 		break;
 | |
| 	case SYS_ICC_HPPIR0_EL1:
 | |
| 	case SYS_ICC_HPPIR1_EL1:
 | |
| 		if (unlikely(!is_read))
 | |
| 			return 0;
 | |
| 		fn = __vgic_v3_read_hppir;
 | |
| 		break;
 | |
| 	case SYS_ICC_IGRPEN0_EL1:
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_igrpen0;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_igrpen0;
 | |
| 		break;
 | |
| 	case SYS_ICC_BPR0_EL1:
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_bpr0;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_bpr0;
 | |
| 		break;
 | |
| 	case SYS_ICC_DIR_EL1:
 | |
| 		if (unlikely(is_read))
 | |
| 			return 0;
 | |
| 		fn = __vgic_v3_write_dir;
 | |
| 		break;
 | |
| 	case SYS_ICC_RPR_EL1:
 | |
| 		if (unlikely(!is_read))
 | |
| 			return 0;
 | |
| 		fn = __vgic_v3_read_rpr;
 | |
| 		break;
 | |
| 	case SYS_ICC_CTLR_EL1:
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_ctlr;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_ctlr;
 | |
| 		break;
 | |
| 	case SYS_ICC_PMR_EL1:
 | |
| 		if (is_read)
 | |
| 			fn = __vgic_v3_read_pmr;
 | |
| 		else
 | |
| 			fn = __vgic_v3_write_pmr;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	vmcr = __vgic_v3_read_vmcr();
 | |
| 	rt = kvm_vcpu_sys_get_rt(vcpu);
 | |
| 	fn(vcpu, vmcr, rt);
 | |
| 
 | |
| 	__kvm_skip_instr(vcpu);
 | |
| 
 | |
| 	return 1;
 | |
| }
 |