1577 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1577 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Core of Xen paravirt_ops implementation.
 | |
|  *
 | |
|  * This file contains the xen_paravirt_ops structure itself, and the
 | |
|  * implementations for:
 | |
|  * - privileged instructions
 | |
|  * - interrupt flags
 | |
|  * - segment operations
 | |
|  * - booting and setup
 | |
|  *
 | |
|  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/start_kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kstrtox.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/edd.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/virtio_anchor.h>
 | |
| #include <linux/stackprotector.h>
 | |
| 
 | |
| #include <xen/xen.h>
 | |
| #include <xen/events.h>
 | |
| #include <xen/interface/xen.h>
 | |
| #include <xen/interface/version.h>
 | |
| #include <xen/interface/physdev.h>
 | |
| #include <xen/interface/vcpu.h>
 | |
| #include <xen/interface/memory.h>
 | |
| #include <xen/interface/nmi.h>
 | |
| #include <xen/interface/xen-mca.h>
 | |
| #include <xen/features.h>
 | |
| #include <xen/page.h>
 | |
| #include <xen/hvc-console.h>
 | |
| #include <xen/acpi.h>
 | |
| 
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/xen/pci.h>
 | |
| #include <asm/xen/hypercall.h>
 | |
| #include <asm/xen/hypervisor.h>
 | |
| #include <asm/xen/cpuid.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/msr-index.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/reboot.h>
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/mach_traps.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/mwait.h>
 | |
| #include <asm/pci_x86.h>
 | |
| #include <asm/cpu.h>
 | |
| #ifdef CONFIG_X86_IOPL_IOPERM
 | |
| #include <asm/io_bitmap.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| #include <linux/acpi.h>
 | |
| #include <asm/acpi.h>
 | |
| #include <acpi/proc_cap_intel.h>
 | |
| #include <acpi/processor.h>
 | |
| #include <xen/interface/platform.h>
 | |
| #endif
 | |
| 
 | |
| #include "xen-ops.h"
 | |
| 
 | |
| #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
 | |
| 
 | |
| void *xen_initial_gdt;
 | |
| 
 | |
| static int xen_cpu_up_prepare_pv(unsigned int cpu);
 | |
| static int xen_cpu_dead_pv(unsigned int cpu);
 | |
| 
 | |
| struct tls_descs {
 | |
| 	struct desc_struct desc[3];
 | |
| };
 | |
| 
 | |
| DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
 | |
| DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
 | |
| 
 | |
| enum xen_lazy_mode xen_get_lazy_mode(void)
 | |
| {
 | |
| 	if (in_interrupt())
 | |
| 		return XEN_LAZY_NONE;
 | |
| 
 | |
| 	return this_cpu_read(xen_lazy_mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Updating the 3 TLS descriptors in the GDT on every task switch is
 | |
|  * surprisingly expensive so we avoid updating them if they haven't
 | |
|  * changed.  Since Xen writes different descriptors than the one
 | |
|  * passed in the update_descriptor hypercall we keep shadow copies to
 | |
|  * compare against.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 | |
| 
 | |
| static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
 | |
| 
 | |
| static int __init parse_xen_msr_safe(char *str)
 | |
| {
 | |
| 	if (str)
 | |
| 		return kstrtobool(str, &xen_msr_safe);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| early_param("xen_msr_safe", parse_xen_msr_safe);
 | |
| 
 | |
| /* Get MTRR settings from Xen and put them into mtrr_state. */
 | |
| static void __init xen_set_mtrr_data(void)
 | |
| {
 | |
| #ifdef CONFIG_MTRR
 | |
| 	struct xen_platform_op op = {
 | |
| 		.cmd = XENPF_read_memtype,
 | |
| 		.interface_version = XENPF_INTERFACE_VERSION,
 | |
| 	};
 | |
| 	unsigned int reg;
 | |
| 	unsigned long mask;
 | |
| 	uint32_t eax, width;
 | |
| 	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
 | |
| 
 | |
| 	/* Get physical address width (only 64-bit cpus supported). */
 | |
| 	width = 36;
 | |
| 	eax = cpuid_eax(0x80000000);
 | |
| 	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
 | |
| 		eax = cpuid_eax(0x80000008);
 | |
| 		width = eax & 0xff;
 | |
| 	}
 | |
| 
 | |
| 	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
 | |
| 		op.u.read_memtype.reg = reg;
 | |
| 		if (HYPERVISOR_platform_op(&op))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only called in dom0, which has all RAM PFNs mapped at
 | |
| 		 * RAM MFNs, and all PCI space etc. is identity mapped.
 | |
| 		 * This means we can treat MFN == PFN regarding MTRR settings.
 | |
| 		 */
 | |
| 		var[reg].base_lo = op.u.read_memtype.type;
 | |
| 		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
 | |
| 		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
 | |
| 		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
 | |
| 		mask &= (1UL << width) - 1;
 | |
| 		if (mask)
 | |
| 			mask |= MTRR_PHYSMASK_V;
 | |
| 		var[reg].mask_lo = mask;
 | |
| 		var[reg].mask_hi = mask >> 32;
 | |
| 	}
 | |
| 
 | |
| 	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
 | |
| 	if (reg)
 | |
| 		mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init xen_pv_init_platform(void)
 | |
| {
 | |
| 	/* PV guests can't operate virtio devices without grants. */
 | |
| 	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
 | |
| 		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
 | |
| 
 | |
| 	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
 | |
| 
 | |
| 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 | |
| 	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 | |
| 
 | |
| 	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
 | |
| 	xen_vcpu_info_reset(0);
 | |
| 
 | |
| 	/* pvclock is in shared info area */
 | |
| 	xen_init_time_ops();
 | |
| 
 | |
| 	if (xen_initial_domain())
 | |
| 		xen_set_mtrr_data();
 | |
| 	else
 | |
| 		mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
 | |
| 
 | |
| 	/* Adjust nr_cpu_ids before "enumeration" happens */
 | |
| 	xen_smp_count_cpus();
 | |
| }
 | |
| 
 | |
| static void __init xen_pv_guest_late_init(void)
 | |
| {
 | |
| #ifndef CONFIG_SMP
 | |
| 	/* Setup shared vcpu info for non-smp configurations */
 | |
| 	xen_setup_vcpu_info_placement();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 | |
| static __read_mostly unsigned int cpuid_leaf5_edx_val;
 | |
| 
 | |
| static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 | |
| 		      unsigned int *cx, unsigned int *dx)
 | |
| {
 | |
| 	unsigned int maskebx = ~0;
 | |
| 	unsigned int or_ebx = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask out inconvenient features, to try and disable as many
 | |
| 	 * unsupported kernel subsystems as possible.
 | |
| 	 */
 | |
| 	switch (*ax) {
 | |
| 	case 0x1:
 | |
| 		/* Replace initial APIC ID in bits 24-31 of EBX. */
 | |
| 		/* See xen_pv_smp_config() for related topology preparations. */
 | |
| 		maskebx = 0x00ffffff;
 | |
| 		or_ebx = smp_processor_id() << 24;
 | |
| 		break;
 | |
| 
 | |
| 	case CPUID_MWAIT_LEAF:
 | |
| 		/* Synthesize the values.. */
 | |
| 		*ax = 0;
 | |
| 		*bx = 0;
 | |
| 		*cx = cpuid_leaf5_ecx_val;
 | |
| 		*dx = cpuid_leaf5_edx_val;
 | |
| 		return;
 | |
| 
 | |
| 	case 0xb:
 | |
| 		/* Suppress extended topology stuff */
 | |
| 		maskebx = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	asm(XEN_EMULATE_PREFIX "cpuid"
 | |
| 		: "=a" (*ax),
 | |
| 		  "=b" (*bx),
 | |
| 		  "=c" (*cx),
 | |
| 		  "=d" (*dx)
 | |
| 		: "0" (*ax), "2" (*cx));
 | |
| 
 | |
| 	*bx &= maskebx;
 | |
| 	*bx |= or_ebx;
 | |
| }
 | |
| 
 | |
| static bool __init xen_check_mwait(void)
 | |
| {
 | |
| #ifdef CONFIG_ACPI
 | |
| 	struct xen_platform_op op = {
 | |
| 		.cmd			= XENPF_set_processor_pminfo,
 | |
| 		.u.set_pminfo.id	= -1,
 | |
| 		.u.set_pminfo.type	= XEN_PM_PDC,
 | |
| 	};
 | |
| 	uint32_t buf[3];
 | |
| 	unsigned int ax, bx, cx, dx;
 | |
| 	unsigned int mwait_mask;
 | |
| 
 | |
| 	/* We need to determine whether it is OK to expose the MWAIT
 | |
| 	 * capability to the kernel to harvest deeper than C3 states from ACPI
 | |
| 	 * _CST using the processor_harvest_xen.c module. For this to work, we
 | |
| 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
 | |
| 	 * checks against). The hypervisor won't expose the MWAIT flag because
 | |
| 	 * it would break backwards compatibility; so we will find out directly
 | |
| 	 * from the hardware and hypercall.
 | |
| 	 */
 | |
| 	if (!xen_initial_domain())
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * When running under platform earlier than Xen4.2, do not expose
 | |
| 	 * mwait, to avoid the risk of loading native acpi pad driver
 | |
| 	 */
 | |
| 	if (!xen_running_on_version_or_later(4, 2))
 | |
| 		return false;
 | |
| 
 | |
| 	ax = 1;
 | |
| 	cx = 0;
 | |
| 
 | |
| 	native_cpuid(&ax, &bx, &cx, &dx);
 | |
| 
 | |
| 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 | |
| 		     (1 << (X86_FEATURE_MWAIT % 32));
 | |
| 
 | |
| 	if ((cx & mwait_mask) != mwait_mask)
 | |
| 		return false;
 | |
| 
 | |
| 	/* We need to emulate the MWAIT_LEAF and for that we need both
 | |
| 	 * ecx and edx. The hypercall provides only partial information.
 | |
| 	 */
 | |
| 
 | |
| 	ax = CPUID_MWAIT_LEAF;
 | |
| 	bx = 0;
 | |
| 	cx = 0;
 | |
| 	dx = 0;
 | |
| 
 | |
| 	native_cpuid(&ax, &bx, &cx, &dx);
 | |
| 
 | |
| 	/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
 | |
| 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 | |
| 	 */
 | |
| 	buf[0] = ACPI_PDC_REVISION_ID;
 | |
| 	buf[1] = 1;
 | |
| 	buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
 | |
| 
 | |
| 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 | |
| 
 | |
| 	if ((HYPERVISOR_platform_op(&op) == 0) &&
 | |
| 	    (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
 | |
| 		cpuid_leaf5_ecx_val = cx;
 | |
| 		cpuid_leaf5_edx_val = dx;
 | |
| 	}
 | |
| 	return true;
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool __init xen_check_xsave(void)
 | |
| {
 | |
| 	unsigned int cx, xsave_mask;
 | |
| 
 | |
| 	cx = cpuid_ecx(1);
 | |
| 
 | |
| 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 | |
| 		     (1 << (X86_FEATURE_OSXSAVE % 32));
 | |
| 
 | |
| 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 | |
| 	return (cx & xsave_mask) == xsave_mask;
 | |
| }
 | |
| 
 | |
| static void __init xen_init_capabilities(void)
 | |
| {
 | |
| 	setup_force_cpu_cap(X86_FEATURE_XENPV);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_DCA);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_ACC);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_SME);
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_LKGS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Xen PV would need some work to support PCID: CR3 handling as well
 | |
| 	 * as xen_flush_tlb_others() would need updating.
 | |
| 	 */
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_PCID);
 | |
| 
 | |
| 	if (!xen_initial_domain())
 | |
| 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
 | |
| 
 | |
| 	if (xen_check_mwait())
 | |
| 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
 | |
| 	else
 | |
| 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 | |
| 
 | |
| 	if (!xen_check_xsave()) {
 | |
| 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 | |
| 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static noinstr void xen_set_debugreg(int reg, unsigned long val)
 | |
| {
 | |
| 	HYPERVISOR_set_debugreg(reg, val);
 | |
| }
 | |
| 
 | |
| static noinstr unsigned long xen_get_debugreg(int reg)
 | |
| {
 | |
| 	return HYPERVISOR_get_debugreg(reg);
 | |
| }
 | |
| 
 | |
| static void xen_start_context_switch(struct task_struct *prev)
 | |
| {
 | |
| 	BUG_ON(preemptible());
 | |
| 
 | |
| 	if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
 | |
| 		arch_leave_lazy_mmu_mode();
 | |
| 		set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
 | |
| 	}
 | |
| 	enter_lazy(XEN_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static void xen_end_context_switch(struct task_struct *next)
 | |
| {
 | |
| 	BUG_ON(preemptible());
 | |
| 
 | |
| 	xen_mc_flush();
 | |
| 	leave_lazy(XEN_LAZY_CPU);
 | |
| 	if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
 | |
| 		arch_enter_lazy_mmu_mode();
 | |
| }
 | |
| 
 | |
| static unsigned long xen_store_tr(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the page permissions for a particular virtual address.  If the
 | |
|  * address is a vmalloc mapping (or other non-linear mapping), then
 | |
|  * find the linear mapping of the page and also set its protections to
 | |
|  * match.
 | |
|  */
 | |
| static void set_aliased_prot(void *v, pgprot_t prot)
 | |
| {
 | |
| 	int level;
 | |
| 	pte_t *ptep;
 | |
| 	pte_t pte;
 | |
| 	unsigned long pfn;
 | |
| 	unsigned char dummy;
 | |
| 	void *va;
 | |
| 
 | |
| 	ptep = lookup_address((unsigned long)v, &level);
 | |
| 	BUG_ON(ptep == NULL);
 | |
| 
 | |
| 	pfn = pte_pfn(*ptep);
 | |
| 	pte = pfn_pte(pfn, prot);
 | |
| 
 | |
| 	/*
 | |
| 	 * Careful: update_va_mapping() will fail if the virtual address
 | |
| 	 * we're poking isn't populated in the page tables.  We don't
 | |
| 	 * need to worry about the direct map (that's always in the page
 | |
| 	 * tables), but we need to be careful about vmap space.  In
 | |
| 	 * particular, the top level page table can lazily propagate
 | |
| 	 * entries between processes, so if we've switched mms since we
 | |
| 	 * vmapped the target in the first place, we might not have the
 | |
| 	 * top-level page table entry populated.
 | |
| 	 *
 | |
| 	 * We disable preemption because we want the same mm active when
 | |
| 	 * we probe the target and when we issue the hypercall.  We'll
 | |
| 	 * have the same nominal mm, but if we're a kernel thread, lazy
 | |
| 	 * mm dropping could change our pgd.
 | |
| 	 *
 | |
| 	 * Out of an abundance of caution, this uses __get_user() to fault
 | |
| 	 * in the target address just in case there's some obscure case
 | |
| 	 * in which the target address isn't readable.
 | |
| 	 */
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	copy_from_kernel_nofault(&dummy, v, 1);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 | |
| 		BUG();
 | |
| 
 | |
| 	va = __va(PFN_PHYS(pfn));
 | |
| 
 | |
| 	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 | |
| 		BUG();
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 | |
| {
 | |
| 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to mark the all aliases of the LDT pages RO.  We
 | |
| 	 * don't need to call vm_flush_aliases(), though, since that's
 | |
| 	 * only responsible for flushing aliases out the TLBs, not the
 | |
| 	 * page tables, and Xen will flush the TLB for us if needed.
 | |
| 	 *
 | |
| 	 * To avoid confusing future readers: none of this is necessary
 | |
| 	 * to load the LDT.  The hypervisor only checks this when the
 | |
| 	 * LDT is faulted in due to subsequent descriptor access.
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < entries; i += entries_per_page)
 | |
| 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 | |
| }
 | |
| 
 | |
| static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 | |
| {
 | |
| 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < entries; i += entries_per_page)
 | |
| 		set_aliased_prot(ldt + i, PAGE_KERNEL);
 | |
| }
 | |
| 
 | |
| static void xen_set_ldt(const void *addr, unsigned entries)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 | |
| 
 | |
| 	trace_xen_cpu_set_ldt(addr, entries);
 | |
| 
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = MMUEXT_SET_LDT;
 | |
| 	op->arg1.linear_addr = (unsigned long)addr;
 | |
| 	op->arg2.nr_ents = entries;
 | |
| 
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(XEN_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static void xen_load_gdt(const struct desc_ptr *dtr)
 | |
| {
 | |
| 	unsigned long va = dtr->address;
 | |
| 	unsigned int size = dtr->size + 1;
 | |
| 	unsigned long pfn, mfn;
 | |
| 	int level;
 | |
| 	pte_t *ptep;
 | |
| 	void *virt;
 | |
| 
 | |
| 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 | |
| 	BUG_ON(size > PAGE_SIZE);
 | |
| 	BUG_ON(va & ~PAGE_MASK);
 | |
| 
 | |
| 	/*
 | |
| 	 * The GDT is per-cpu and is in the percpu data area.
 | |
| 	 * That can be virtually mapped, so we need to do a
 | |
| 	 * page-walk to get the underlying MFN for the
 | |
| 	 * hypercall.  The page can also be in the kernel's
 | |
| 	 * linear range, so we need to RO that mapping too.
 | |
| 	 */
 | |
| 	ptep = lookup_address(va, &level);
 | |
| 	BUG_ON(ptep == NULL);
 | |
| 
 | |
| 	pfn = pte_pfn(*ptep);
 | |
| 	mfn = pfn_to_mfn(pfn);
 | |
| 	virt = __va(PFN_PHYS(pfn));
 | |
| 
 | |
| 	make_lowmem_page_readonly((void *)va);
 | |
| 	make_lowmem_page_readonly(virt);
 | |
| 
 | |
| 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * load_gdt for early boot, when the gdt is only mapped once
 | |
|  */
 | |
| static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 | |
| {
 | |
| 	unsigned long va = dtr->address;
 | |
| 	unsigned int size = dtr->size + 1;
 | |
| 	unsigned long pfn, mfn;
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 | |
| 	BUG_ON(size > PAGE_SIZE);
 | |
| 	BUG_ON(va & ~PAGE_MASK);
 | |
| 
 | |
| 	pfn = virt_to_pfn((void *)va);
 | |
| 	mfn = pfn_to_mfn(pfn);
 | |
| 
 | |
| 	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 | |
| 		BUG();
 | |
| 
 | |
| 	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| static inline bool desc_equal(const struct desc_struct *d1,
 | |
| 			      const struct desc_struct *d2)
 | |
| {
 | |
| 	return !memcmp(d1, d2, sizeof(*d1));
 | |
| }
 | |
| 
 | |
| static void load_TLS_descriptor(struct thread_struct *t,
 | |
| 				unsigned int cpu, unsigned int i)
 | |
| {
 | |
| 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 | |
| 	struct desc_struct *gdt;
 | |
| 	xmaddr_t maddr;
 | |
| 	struct multicall_space mc;
 | |
| 
 | |
| 	if (desc_equal(shadow, &t->tls_array[i]))
 | |
| 		return;
 | |
| 
 | |
| 	*shadow = t->tls_array[i];
 | |
| 
 | |
| 	gdt = get_cpu_gdt_rw(cpu);
 | |
| 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 | |
| 	mc = __xen_mc_entry(0);
 | |
| 
 | |
| 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 | |
| }
 | |
| 
 | |
| static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * In lazy mode we need to zero %fs, otherwise we may get an
 | |
| 	 * exception between the new %fs descriptor being loaded and
 | |
| 	 * %fs being effectively cleared at __switch_to().
 | |
| 	 */
 | |
| 	if (xen_get_lazy_mode() == XEN_LAZY_CPU)
 | |
| 		loadsegment(fs, 0);
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	load_TLS_descriptor(t, cpu, 0);
 | |
| 	load_TLS_descriptor(t, cpu, 1);
 | |
| 	load_TLS_descriptor(t, cpu, 2);
 | |
| 
 | |
| 	xen_mc_issue(XEN_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static void xen_load_gs_index(unsigned int idx)
 | |
| {
 | |
| 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 | |
| 				const void *ptr)
 | |
| {
 | |
| 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 | |
| 	u64 entry = *(u64 *)ptr;
 | |
| 
 | |
| 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_flush();
 | |
| 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 | |
| 		BUG();
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| void noist_exc_debug(struct pt_regs *regs);
 | |
| 
 | |
| DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
 | |
| {
 | |
| 	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
 | |
| 	exc_nmi(regs);
 | |
| }
 | |
| 
 | |
| DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
 | |
| {
 | |
| 	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
 | |
| 	exc_double_fault(regs, error_code);
 | |
| }
 | |
| 
 | |
| DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
 | |
| {
 | |
| 	/*
 | |
| 	 * There's no IST on Xen PV, but we still need to dispatch
 | |
| 	 * to the correct handler.
 | |
| 	 */
 | |
| 	if (user_mode(regs))
 | |
| 		noist_exc_debug(regs);
 | |
| 	else
 | |
| 		exc_debug(regs);
 | |
| }
 | |
| 
 | |
| DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
 | |
| {
 | |
| 	/* This should never happen and there is no way to handle it. */
 | |
| 	instrumentation_begin();
 | |
| 	pr_err("Unknown trap in Xen PV mode.");
 | |
| 	BUG();
 | |
| 	instrumentation_end();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_MCE
 | |
| DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
 | |
| {
 | |
| 	/*
 | |
| 	 * There's no IST on Xen PV, but we still need to dispatch
 | |
| 	 * to the correct handler.
 | |
| 	 */
 | |
| 	if (user_mode(regs))
 | |
| 		noist_exc_machine_check(regs);
 | |
| 	else
 | |
| 		exc_machine_check(regs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct trap_array_entry {
 | |
| 	void (*orig)(void);
 | |
| 	void (*xen)(void);
 | |
| 	bool ist_okay;
 | |
| };
 | |
| 
 | |
| #define TRAP_ENTRY(func, ist_ok) {			\
 | |
| 	.orig		= asm_##func,			\
 | |
| 	.xen		= xen_asm_##func,		\
 | |
| 	.ist_okay	= ist_ok }
 | |
| 
 | |
| #define TRAP_ENTRY_REDIR(func, ist_ok) {		\
 | |
| 	.orig		= asm_##func,			\
 | |
| 	.xen		= xen_asm_xenpv_##func,		\
 | |
| 	.ist_okay	= ist_ok }
 | |
| 
 | |
| static struct trap_array_entry trap_array[] = {
 | |
| 	TRAP_ENTRY_REDIR(exc_debug,			true  ),
 | |
| 	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
 | |
| #ifdef CONFIG_X86_MCE
 | |
| 	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
 | |
| #endif
 | |
| 	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
 | |
| 	TRAP_ENTRY(exc_int3,				false ),
 | |
| 	TRAP_ENTRY(exc_overflow,			false ),
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| 	TRAP_ENTRY(int80_emulation,			false ),
 | |
| #endif
 | |
| 	TRAP_ENTRY(exc_page_fault,			false ),
 | |
| 	TRAP_ENTRY(exc_divide_error,			false ),
 | |
| 	TRAP_ENTRY(exc_bounds,				false ),
 | |
| 	TRAP_ENTRY(exc_invalid_op,			false ),
 | |
| 	TRAP_ENTRY(exc_device_not_available,		false ),
 | |
| 	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
 | |
| 	TRAP_ENTRY(exc_invalid_tss,			false ),
 | |
| 	TRAP_ENTRY(exc_segment_not_present,		false ),
 | |
| 	TRAP_ENTRY(exc_stack_segment,			false ),
 | |
| 	TRAP_ENTRY(exc_general_protection,		false ),
 | |
| 	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
 | |
| 	TRAP_ENTRY(exc_coprocessor_error,		false ),
 | |
| 	TRAP_ENTRY(exc_alignment_check,			false ),
 | |
| 	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
 | |
| #ifdef CONFIG_X86_CET
 | |
| 	TRAP_ENTRY(exc_control_protection,		false ),
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static bool __ref get_trap_addr(void **addr, unsigned int ist)
 | |
| {
 | |
| 	unsigned int nr;
 | |
| 	bool ist_okay = false;
 | |
| 	bool found = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Replace trap handler addresses by Xen specific ones.
 | |
| 	 * Check for known traps using IST and whitelist them.
 | |
| 	 * The debugger ones are the only ones we care about.
 | |
| 	 * Xen will handle faults like double_fault, so we should never see
 | |
| 	 * them.  Warn if there's an unexpected IST-using fault handler.
 | |
| 	 */
 | |
| 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 | |
| 		struct trap_array_entry *entry = trap_array + nr;
 | |
| 
 | |
| 		if (*addr == entry->orig) {
 | |
| 			*addr = entry->xen;
 | |
| 			ist_okay = entry->ist_okay;
 | |
| 			found = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr == ARRAY_SIZE(trap_array) &&
 | |
| 	    *addr >= (void *)early_idt_handler_array[0] &&
 | |
| 	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 | |
| 		nr = (*addr - (void *)early_idt_handler_array[0]) /
 | |
| 		     EARLY_IDT_HANDLER_SIZE;
 | |
| 		*addr = (void *)xen_early_idt_handler_array[nr];
 | |
| 		found = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!found)
 | |
| 		*addr = (void *)xen_asm_exc_xen_unknown_trap;
 | |
| 
 | |
| 	if (WARN_ON(found && ist != 0 && !ist_okay))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int cvt_gate_to_trap(int vector, const gate_desc *val,
 | |
| 			    struct trap_info *info)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 | |
| 		return 0;
 | |
| 
 | |
| 	info->vector = vector;
 | |
| 
 | |
| 	addr = gate_offset(val);
 | |
| 	if (!get_trap_addr((void **)&addr, val->bits.ist))
 | |
| 		return 0;
 | |
| 	info->address = addr;
 | |
| 
 | |
| 	info->cs = gate_segment(val);
 | |
| 	info->flags = val->bits.dpl;
 | |
| 	/* interrupt gates clear IF */
 | |
| 	if (val->bits.type == GATE_INTERRUPT)
 | |
| 		info->flags |= 1 << 2;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Locations of each CPU's IDT */
 | |
| static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 | |
| 
 | |
| /* Set an IDT entry.  If the entry is part of the current IDT, then
 | |
|    also update Xen. */
 | |
| static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 | |
| {
 | |
| 	unsigned long p = (unsigned long)&dt[entrynum];
 | |
| 	unsigned long start, end;
 | |
| 
 | |
| 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	start = __this_cpu_read(idt_desc.address);
 | |
| 	end = start + __this_cpu_read(idt_desc.size) + 1;
 | |
| 
 | |
| 	xen_mc_flush();
 | |
| 
 | |
| 	native_write_idt_entry(dt, entrynum, g);
 | |
| 
 | |
| 	if (p >= start && (p + 8) <= end) {
 | |
| 		struct trap_info info[2];
 | |
| 
 | |
| 		info[1].address = 0;
 | |
| 
 | |
| 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
 | |
| 			if (HYPERVISOR_set_trap_table(info))
 | |
| 				BUG();
 | |
| 	}
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
 | |
| 				      struct trap_info *traps, bool full)
 | |
| {
 | |
| 	unsigned in, out, count;
 | |
| 
 | |
| 	count = (desc->size+1) / sizeof(gate_desc);
 | |
| 	BUG_ON(count > 256);
 | |
| 
 | |
| 	for (in = out = 0; in < count; in++) {
 | |
| 		gate_desc *entry = (gate_desc *)(desc->address) + in;
 | |
| 
 | |
| 		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
 | |
| 			out++;
 | |
| 	}
 | |
| 
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| void xen_copy_trap_info(struct trap_info *traps)
 | |
| {
 | |
| 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 | |
| 
 | |
| 	xen_convert_trap_info(desc, traps, true);
 | |
| }
 | |
| 
 | |
| /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 | |
|    hold a spinlock to protect the static traps[] array (static because
 | |
|    it avoids allocation, and saves stack space). */
 | |
| static void xen_load_idt(const struct desc_ptr *desc)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(lock);
 | |
| 	static struct trap_info traps[257];
 | |
| 	static const struct trap_info zero = { };
 | |
| 	unsigned out;
 | |
| 
 | |
| 	trace_xen_cpu_load_idt(desc);
 | |
| 
 | |
| 	spin_lock(&lock);
 | |
| 
 | |
| 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 | |
| 
 | |
| 	out = xen_convert_trap_info(desc, traps, false);
 | |
| 	traps[out] = zero;
 | |
| 
 | |
| 	xen_mc_flush();
 | |
| 	if (HYPERVISOR_set_trap_table(traps))
 | |
| 		BUG();
 | |
| 
 | |
| 	spin_unlock(&lock);
 | |
| }
 | |
| 
 | |
| /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 | |
|    they're handled differently. */
 | |
| static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 | |
| 				const void *desc, int type)
 | |
| {
 | |
| 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case DESC_LDT:
 | |
| 	case DESC_TSS:
 | |
| 		/* ignore */
 | |
| 		break;
 | |
| 
 | |
| 	default: {
 | |
| 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 | |
| 
 | |
| 		xen_mc_flush();
 | |
| 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Version of write_gdt_entry for use at early boot-time needed to
 | |
|  * update an entry as simply as possible.
 | |
|  */
 | |
| static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 | |
| 					    const void *desc, int type)
 | |
| {
 | |
| 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case DESC_LDT:
 | |
| 	case DESC_TSS:
 | |
| 		/* ignore */
 | |
| 		break;
 | |
| 
 | |
| 	default: {
 | |
| 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
 | |
| 
 | |
| 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 | |
| 			dt[entry] = *(struct desc_struct *)desc;
 | |
| 	}
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_load_sp0(unsigned long sp0)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	mcs = xen_mc_entry(0);
 | |
| 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 | |
| 	xen_mc_issue(XEN_LAZY_CPU);
 | |
| 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_IOPL_IOPERM
 | |
| static void xen_invalidate_io_bitmap(void)
 | |
| {
 | |
| 	struct physdev_set_iobitmap iobitmap = {
 | |
| 		.bitmap = NULL,
 | |
| 		.nr_ports = 0,
 | |
| 	};
 | |
| 
 | |
| 	native_tss_invalidate_io_bitmap();
 | |
| 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 | |
| }
 | |
| 
 | |
| static void xen_update_io_bitmap(void)
 | |
| {
 | |
| 	struct physdev_set_iobitmap iobitmap;
 | |
| 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 | |
| 
 | |
| 	native_tss_update_io_bitmap();
 | |
| 
 | |
| 	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
 | |
| 			  tss->x86_tss.io_bitmap_base;
 | |
| 	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
 | |
| 		iobitmap.nr_ports = 0;
 | |
| 	else
 | |
| 		iobitmap.nr_ports = IO_BITMAP_BITS;
 | |
| 
 | |
| 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void xen_io_delay(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 | |
| 
 | |
| static unsigned long xen_read_cr0(void)
 | |
| {
 | |
| 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
 | |
| 
 | |
| 	if (unlikely(cr0 == 0)) {
 | |
| 		cr0 = native_read_cr0();
 | |
| 		this_cpu_write(xen_cr0_value, cr0);
 | |
| 	}
 | |
| 
 | |
| 	return cr0;
 | |
| }
 | |
| 
 | |
| static void xen_write_cr0(unsigned long cr0)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	this_cpu_write(xen_cr0_value, cr0);
 | |
| 
 | |
| 	/* Only pay attention to cr0.TS; everything else is
 | |
| 	   ignored. */
 | |
| 	mcs = xen_mc_entry(0);
 | |
| 
 | |
| 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 | |
| 
 | |
| 	xen_mc_issue(XEN_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static void xen_write_cr4(unsigned long cr4)
 | |
| {
 | |
| 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
 | |
| 
 | |
| 	native_write_cr4(cr4);
 | |
| }
 | |
| 
 | |
| static u64 xen_do_read_msr(unsigned int msr, int *err)
 | |
| {
 | |
| 	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
 | |
| 
 | |
| 	if (pmu_msr_read(msr, &val, err))
 | |
| 		return val;
 | |
| 
 | |
| 	if (err)
 | |
| 		val = native_read_msr_safe(msr, err);
 | |
| 	else
 | |
| 		val = native_read_msr(msr);
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		val &= ~X2APIC_ENABLE;
 | |
| 		if (smp_processor_id() == 0)
 | |
| 			val |= MSR_IA32_APICBASE_BSP;
 | |
| 		else
 | |
| 			val &= ~MSR_IA32_APICBASE_BSP;
 | |
| 		break;
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void set_seg(unsigned int which, unsigned int low, unsigned int high,
 | |
| 		    int *err)
 | |
| {
 | |
| 	u64 base = ((u64)high << 32) | low;
 | |
| 
 | |
| 	if (HYPERVISOR_set_segment_base(which, base) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (err)
 | |
| 		*err = -EIO;
 | |
| 	else
 | |
| 		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Support write_msr_safe() and write_msr() semantics.
 | |
|  * With err == NULL write_msr() semantics are selected.
 | |
|  * Supplying an err pointer requires err to be pre-initialized with 0.
 | |
|  */
 | |
| static void xen_do_write_msr(unsigned int msr, unsigned int low,
 | |
| 			     unsigned int high, int *err)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case MSR_FS_BASE:
 | |
| 		set_seg(SEGBASE_FS, low, high, err);
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 		set_seg(SEGBASE_GS_USER, low, high, err);
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_GS_BASE:
 | |
| 		set_seg(SEGBASE_GS_KERNEL, low, high, err);
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_STAR:
 | |
| 	case MSR_CSTAR:
 | |
| 	case MSR_LSTAR:
 | |
| 	case MSR_SYSCALL_MASK:
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		/* Fast syscall setup is all done in hypercalls, so
 | |
| 		   these are all ignored.  Stub them out here to stop
 | |
| 		   Xen console noise. */
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		if (!pmu_msr_write(msr, low, high, err)) {
 | |
| 			if (err)
 | |
| 				*err = native_write_msr_safe(msr, low, high);
 | |
| 			else
 | |
| 				native_write_msr(msr, low, high);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u64 xen_read_msr_safe(unsigned int msr, int *err)
 | |
| {
 | |
| 	return xen_do_read_msr(msr, err);
 | |
| }
 | |
| 
 | |
| static int xen_write_msr_safe(unsigned int msr, unsigned int low,
 | |
| 			      unsigned int high)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	xen_do_write_msr(msr, low, high, &err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static u64 xen_read_msr(unsigned int msr)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
 | |
| }
 | |
| 
 | |
| static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
 | |
| }
 | |
| 
 | |
| /* This is called once we have the cpu_possible_mask */
 | |
| void __init xen_setup_vcpu_info_placement(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		/* Set up direct vCPU id mapping for PV guests. */
 | |
| 		per_cpu(xen_vcpu_id, cpu) = cpu;
 | |
| 		xen_vcpu_setup(cpu);
 | |
| 	}
 | |
| 
 | |
| 	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
 | |
| 	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
 | |
| 	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
 | |
| 	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
 | |
| }
 | |
| 
 | |
| static const struct pv_info xen_info __initconst = {
 | |
| 	.extra_user_64bit_cs = FLAT_USER_CS64,
 | |
| 	.name = "Xen",
 | |
| };
 | |
| 
 | |
| static const typeof(pv_ops) xen_cpu_ops __initconst = {
 | |
| 	.cpu = {
 | |
| 		.cpuid = xen_cpuid,
 | |
| 
 | |
| 		.set_debugreg = xen_set_debugreg,
 | |
| 		.get_debugreg = xen_get_debugreg,
 | |
| 
 | |
| 		.read_cr0 = xen_read_cr0,
 | |
| 		.write_cr0 = xen_write_cr0,
 | |
| 
 | |
| 		.write_cr4 = xen_write_cr4,
 | |
| 
 | |
| 		.wbinvd = pv_native_wbinvd,
 | |
| 
 | |
| 		.read_msr = xen_read_msr,
 | |
| 		.write_msr = xen_write_msr,
 | |
| 
 | |
| 		.read_msr_safe = xen_read_msr_safe,
 | |
| 		.write_msr_safe = xen_write_msr_safe,
 | |
| 
 | |
| 		.read_pmc = xen_read_pmc,
 | |
| 
 | |
| 		.load_tr_desc = paravirt_nop,
 | |
| 		.set_ldt = xen_set_ldt,
 | |
| 		.load_gdt = xen_load_gdt,
 | |
| 		.load_idt = xen_load_idt,
 | |
| 		.load_tls = xen_load_tls,
 | |
| 		.load_gs_index = xen_load_gs_index,
 | |
| 
 | |
| 		.alloc_ldt = xen_alloc_ldt,
 | |
| 		.free_ldt = xen_free_ldt,
 | |
| 
 | |
| 		.store_tr = xen_store_tr,
 | |
| 
 | |
| 		.write_ldt_entry = xen_write_ldt_entry,
 | |
| 		.write_gdt_entry = xen_write_gdt_entry,
 | |
| 		.write_idt_entry = xen_write_idt_entry,
 | |
| 		.load_sp0 = xen_load_sp0,
 | |
| 
 | |
| #ifdef CONFIG_X86_IOPL_IOPERM
 | |
| 		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
 | |
| 		.update_io_bitmap = xen_update_io_bitmap,
 | |
| #endif
 | |
| 		.io_delay = xen_io_delay,
 | |
| 
 | |
| 		.start_context_switch = xen_start_context_switch,
 | |
| 		.end_context_switch = xen_end_context_switch,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static void xen_restart(char *msg)
 | |
| {
 | |
| 	xen_reboot(SHUTDOWN_reboot);
 | |
| }
 | |
| 
 | |
| static void xen_machine_halt(void)
 | |
| {
 | |
| 	xen_reboot(SHUTDOWN_poweroff);
 | |
| }
 | |
| 
 | |
| static void xen_machine_power_off(void)
 | |
| {
 | |
| 	do_kernel_power_off();
 | |
| 	xen_reboot(SHUTDOWN_poweroff);
 | |
| }
 | |
| 
 | |
| static void xen_crash_shutdown(struct pt_regs *regs)
 | |
| {
 | |
| 	xen_reboot(SHUTDOWN_crash);
 | |
| }
 | |
| 
 | |
| static const struct machine_ops xen_machine_ops __initconst = {
 | |
| 	.restart = xen_restart,
 | |
| 	.halt = xen_machine_halt,
 | |
| 	.power_off = xen_machine_power_off,
 | |
| 	.shutdown = xen_machine_halt,
 | |
| 	.crash_shutdown = xen_crash_shutdown,
 | |
| 	.emergency_restart = xen_emergency_restart,
 | |
| };
 | |
| 
 | |
| static unsigned char xen_get_nmi_reason(void)
 | |
| {
 | |
| 	unsigned char reason = 0;
 | |
| 
 | |
| 	/* Construct a value which looks like it came from port 0x61. */
 | |
| 	if (test_bit(_XEN_NMIREASON_io_error,
 | |
| 		     &HYPERVISOR_shared_info->arch.nmi_reason))
 | |
| 		reason |= NMI_REASON_IOCHK;
 | |
| 	if (test_bit(_XEN_NMIREASON_pci_serr,
 | |
| 		     &HYPERVISOR_shared_info->arch.nmi_reason))
 | |
| 		reason |= NMI_REASON_SERR;
 | |
| 
 | |
| 	return reason;
 | |
| }
 | |
| 
 | |
| static void __init xen_boot_params_init_edd(void)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_EDD)
 | |
| 	struct xen_platform_op op;
 | |
| 	struct edd_info *edd_info;
 | |
| 	u32 *mbr_signature;
 | |
| 	unsigned nr;
 | |
| 	int ret;
 | |
| 
 | |
| 	edd_info = boot_params.eddbuf;
 | |
| 	mbr_signature = boot_params.edd_mbr_sig_buffer;
 | |
| 
 | |
| 	op.cmd = XENPF_firmware_info;
 | |
| 
 | |
| 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
 | |
| 	for (nr = 0; nr < EDDMAXNR; nr++) {
 | |
| 		struct edd_info *info = edd_info + nr;
 | |
| 
 | |
| 		op.u.firmware_info.index = nr;
 | |
| 		info->params.length = sizeof(info->params);
 | |
| 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
 | |
| 				     &info->params);
 | |
| 		ret = HYPERVISOR_platform_op(&op);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| #define C(x) info->x = op.u.firmware_info.u.disk_info.x
 | |
| 		C(device);
 | |
| 		C(version);
 | |
| 		C(interface_support);
 | |
| 		C(legacy_max_cylinder);
 | |
| 		C(legacy_max_head);
 | |
| 		C(legacy_sectors_per_track);
 | |
| #undef C
 | |
| 	}
 | |
| 	boot_params.eddbuf_entries = nr;
 | |
| 
 | |
| 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
 | |
| 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
 | |
| 		op.u.firmware_info.index = nr;
 | |
| 		ret = HYPERVISOR_platform_op(&op);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
 | |
| 	}
 | |
| 	boot_params.edd_mbr_sig_buf_entries = nr;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the GDT and segment registers for -fstack-protector.  Until
 | |
|  * we do this, we have to be careful not to call any stack-protected
 | |
|  * function, which is most of the kernel.
 | |
|  */
 | |
| static void __init xen_setup_gdt(int cpu)
 | |
| {
 | |
| 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
 | |
| 	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
 | |
| 
 | |
| 	switch_gdt_and_percpu_base(cpu);
 | |
| 
 | |
| 	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
 | |
| 	pv_ops.cpu.load_gdt = xen_load_gdt;
 | |
| }
 | |
| 
 | |
| static void __init xen_dom0_set_legacy_features(void)
 | |
| {
 | |
| 	x86_platform.legacy.rtc = 1;
 | |
| }
 | |
| 
 | |
| static void __init xen_domu_set_legacy_features(void)
 | |
| {
 | |
| 	x86_platform.legacy.rtc = 0;
 | |
| }
 | |
| 
 | |
| extern void early_xen_iret_patch(void);
 | |
| 
 | |
| /* First C function to be called on Xen boot */
 | |
| asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
 | |
| {
 | |
| 	struct physdev_set_iopl set_iopl;
 | |
| 	unsigned long initrd_start = 0;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!si)
 | |
| 		return;
 | |
| 
 | |
| 	clear_bss();
 | |
| 
 | |
| 	xen_start_info = si;
 | |
| 
 | |
| 	__text_gen_insn(&early_xen_iret_patch,
 | |
| 			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
 | |
| 			JMP32_INSN_SIZE);
 | |
| 
 | |
| 	xen_domain_type = XEN_PV_DOMAIN;
 | |
| 	xen_start_flags = xen_start_info->flags;
 | |
| 
 | |
| 	xen_setup_features();
 | |
| 
 | |
| 	/* Install Xen paravirt ops */
 | |
| 	pv_info = xen_info;
 | |
| 	pv_ops.cpu = xen_cpu_ops.cpu;
 | |
| 	xen_init_irq_ops();
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup xen_vcpu early because it is needed for
 | |
| 	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
 | |
| 	 *
 | |
| 	 * Don't do the full vcpu_info placement stuff until we have
 | |
| 	 * the cpu_possible_mask and a non-dummy shared_info.
 | |
| 	 */
 | |
| 	xen_vcpu_info_reset(0);
 | |
| 
 | |
| 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
 | |
| 	x86_platform.realmode_reserve = x86_init_noop;
 | |
| 	x86_platform.realmode_init = x86_init_noop;
 | |
| 
 | |
| 	x86_init.resources.memory_setup = xen_memory_setup;
 | |
| 	x86_init.irqs.intr_mode_select	= x86_init_noop;
 | |
| 	x86_init.irqs.intr_mode_init	= x86_64_probe_apic;
 | |
| 	x86_init.oem.arch_setup = xen_arch_setup;
 | |
| 	x86_init.oem.banner = xen_banner;
 | |
| 	x86_init.hyper.init_platform = xen_pv_init_platform;
 | |
| 	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up some pagetable state before starting to set any ptes.
 | |
| 	 */
 | |
| 
 | |
| 	xen_setup_machphys_mapping();
 | |
| 	xen_init_mmu_ops();
 | |
| 
 | |
| 	/* Prevent unwanted bits from being set in PTEs. */
 | |
| 	__supported_pte_mask &= ~_PAGE_GLOBAL;
 | |
| 	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 | |
| 
 | |
| 	/* Get mfn list */
 | |
| 	xen_build_dynamic_phys_to_machine();
 | |
| 
 | |
| 	/* Work out if we support NX */
 | |
| 	get_cpu_cap(&boot_cpu_data);
 | |
| 	x86_configure_nx();
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up kernel GDT and segment registers, mainly so that
 | |
| 	 * -fstack-protector code can be executed.
 | |
| 	 */
 | |
| 	xen_setup_gdt(0);
 | |
| 
 | |
| 	/* Determine virtual and physical address sizes */
 | |
| 	get_cpu_address_sizes(&boot_cpu_data);
 | |
| 
 | |
| 	/* Let's presume PV guests always boot on vCPU with id 0. */
 | |
| 	per_cpu(xen_vcpu_id, 0) = 0;
 | |
| 
 | |
| 	idt_setup_early_handler();
 | |
| 
 | |
| 	xen_init_capabilities();
 | |
| 
 | |
| 	/*
 | |
| 	 * set up the basic apic ops.
 | |
| 	 */
 | |
| 	xen_init_apic();
 | |
| 
 | |
| 	machine_ops = xen_machine_ops;
 | |
| 
 | |
| 	/*
 | |
| 	 * The only reliable way to retain the initial address of the
 | |
| 	 * percpu gdt_page is to remember it here, so we can go and
 | |
| 	 * mark it RW later, when the initial percpu area is freed.
 | |
| 	 */
 | |
| 	xen_initial_gdt = &per_cpu(gdt_page, 0);
 | |
| 
 | |
| 	xen_smp_init();
 | |
| 
 | |
| #ifdef CONFIG_ACPI_NUMA
 | |
| 	/*
 | |
| 	 * The pages we from Xen are not related to machine pages, so
 | |
| 	 * any NUMA information the kernel tries to get from ACPI will
 | |
| 	 * be meaningless.  Prevent it from trying.
 | |
| 	 */
 | |
| 	disable_srat();
 | |
| #endif
 | |
| 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	early_boot_irqs_disabled = true;
 | |
| 
 | |
| 	xen_raw_console_write("mapping kernel into physical memory\n");
 | |
| 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
 | |
| 				   xen_start_info->nr_pages);
 | |
| 	xen_reserve_special_pages();
 | |
| 
 | |
| 	/*
 | |
| 	 * We used to do this in xen_arch_setup, but that is too late
 | |
| 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
 | |
| 	 * early_amd_init which pokes 0xcf8 port.
 | |
| 	 */
 | |
| 	set_iopl.iopl = 1;
 | |
| 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 | |
| 	if (rc != 0)
 | |
| 		xen_raw_printk("physdev_op failed %d\n", rc);
 | |
| 
 | |
| 
 | |
| 	if (xen_start_info->mod_start) {
 | |
| 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
 | |
| 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
 | |
| 	    else
 | |
| 		initrd_start = __pa(xen_start_info->mod_start);
 | |
| 	}
 | |
| 
 | |
| 	/* Poke various useful things into boot_params */
 | |
| 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
 | |
| 	boot_params.hdr.ramdisk_image = initrd_start;
 | |
| 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
 | |
| 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
 | |
| 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
 | |
| 
 | |
| 	if (!xen_initial_domain()) {
 | |
| 		if (pci_xen)
 | |
| 			x86_init.pci.arch_init = pci_xen_init;
 | |
| 		x86_platform.set_legacy_features =
 | |
| 				xen_domu_set_legacy_features;
 | |
| 	} else {
 | |
| 		const struct dom0_vga_console_info *info =
 | |
| 			(void *)((char *)xen_start_info +
 | |
| 				 xen_start_info->console.dom0.info_off);
 | |
| 		struct xen_platform_op op = {
 | |
| 			.cmd = XENPF_firmware_info,
 | |
| 			.interface_version = XENPF_INTERFACE_VERSION,
 | |
| 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
 | |
| 		};
 | |
| 
 | |
| 		x86_platform.set_legacy_features =
 | |
| 				xen_dom0_set_legacy_features;
 | |
| 		xen_init_vga(info, xen_start_info->console.dom0.info_size,
 | |
| 			     &boot_params.screen_info);
 | |
| 		xen_start_info->console.domU.mfn = 0;
 | |
| 		xen_start_info->console.domU.evtchn = 0;
 | |
| 
 | |
| 		if (HYPERVISOR_platform_op(&op) == 0)
 | |
| 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
 | |
| 
 | |
| 		/* Make sure ACS will be enabled */
 | |
| 		pci_request_acs();
 | |
| 
 | |
| 		xen_acpi_sleep_register();
 | |
| 
 | |
| 		xen_boot_params_init_edd();
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 		/*
 | |
| 		 * Disable selecting "Firmware First mode" for correctable
 | |
| 		 * memory errors, as this is the duty of the hypervisor to
 | |
| 		 * decide.
 | |
| 		 */
 | |
| 		acpi_disable_cmcff = 1;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	xen_add_preferred_consoles();
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 	/* PCI BIOS service won't work from a PV guest. */
 | |
| 	pci_probe &= ~PCI_PROBE_BIOS;
 | |
| #endif
 | |
| 	xen_raw_console_write("about to get started...\n");
 | |
| 
 | |
| 	/* We need this for printk timestamps */
 | |
| 	xen_setup_runstate_info(0);
 | |
| 
 | |
| 	xen_efi_init(&boot_params);
 | |
| 
 | |
| 	/* Start the world */
 | |
| 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
 | |
| 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
 | |
| }
 | |
| 
 | |
| static int xen_cpu_up_prepare_pv(unsigned int cpu)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (per_cpu(xen_vcpu, cpu) == NULL)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	xen_setup_timer(cpu);
 | |
| 
 | |
| 	rc = xen_smp_intr_init(cpu);
 | |
| 	if (rc) {
 | |
| 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
 | |
| 		     cpu, rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	rc = xen_smp_intr_init_pv(cpu);
 | |
| 	if (rc) {
 | |
| 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
 | |
| 		     cpu, rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int xen_cpu_dead_pv(unsigned int cpu)
 | |
| {
 | |
| 	xen_smp_intr_free(cpu);
 | |
| 	xen_smp_intr_free_pv(cpu);
 | |
| 
 | |
| 	xen_teardown_timer(cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static uint32_t __init xen_platform_pv(void)
 | |
| {
 | |
| 	if (xen_pv_domain())
 | |
| 		return xen_cpuid_base();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
 | |
| 	.name                   = "Xen PV",
 | |
| 	.detect                 = xen_platform_pv,
 | |
| 	.type			= X86_HYPER_XEN_PV,
 | |
| 	.runtime.pin_vcpu       = xen_pin_vcpu,
 | |
| 	.ignore_nopv		= true,
 | |
| };
 |