322 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  * Copyright 2021 Google LLC
 | |
|  */
 | |
| /*
 | |
|  * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
 | |
|  * instructions. It works on 8 blocks at a time, by precomputing the first 8
 | |
|  * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
 | |
|  * allows us to split finite field multiplication into two steps.
 | |
|  *
 | |
|  * In the first step, we consider h^i, m_i as normal polynomials of degree less
 | |
|  * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
 | |
|  * is simply polynomial multiplication.
 | |
|  *
 | |
|  * In the second step, we compute the reduction of p(x) modulo the finite field
 | |
|  * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
 | |
|  *
 | |
|  * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
 | |
|  * multiplication is finite field multiplication. The advantage is that the
 | |
|  * two-step process  only requires 1 finite field reduction for every 8
 | |
|  * polynomial multiplications. Further parallelism is gained by interleaving the
 | |
|  * multiplications and polynomial reductions.
 | |
|  */
 | |
| 
 | |
| #include <linux/linkage.h>
 | |
| #include <asm/frame.h>
 | |
| 
 | |
| #define STRIDE_BLOCKS 8
 | |
| 
 | |
| #define GSTAR %xmm7
 | |
| #define PL %xmm8
 | |
| #define PH %xmm9
 | |
| #define TMP_XMM %xmm11
 | |
| #define LO %xmm12
 | |
| #define HI %xmm13
 | |
| #define MI %xmm14
 | |
| #define SUM %xmm15
 | |
| 
 | |
| #define KEY_POWERS %rdi
 | |
| #define MSG %rsi
 | |
| #define BLOCKS_LEFT %rdx
 | |
| #define ACCUMULATOR %rcx
 | |
| #define TMP %rax
 | |
| 
 | |
| .section    .rodata.cst16.gstar, "aM", @progbits, 16
 | |
| .align 16
 | |
| 
 | |
| .Lgstar:
 | |
| 	.quad 0xc200000000000000, 0xc200000000000000
 | |
| 
 | |
| .text
 | |
| 
 | |
| /*
 | |
|  * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
 | |
|  * count pointed to by MSG and KEY_POWERS.
 | |
|  */
 | |
| .macro schoolbook1 count
 | |
| 	.set i, 0
 | |
| 	.rept (\count)
 | |
| 		schoolbook1_iteration i 0
 | |
| 		.set i, (i +1)
 | |
| 	.endr
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Computes the product of two 128-bit polynomials at the memory locations
 | |
|  * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
 | |
|  * the 256-bit product into LO, MI, HI.
 | |
|  *
 | |
|  * Given:
 | |
|  *   X = [X_1 : X_0]
 | |
|  *   Y = [Y_1 : Y_0]
 | |
|  *
 | |
|  * We compute:
 | |
|  *   LO += X_0 * Y_0
 | |
|  *   MI += X_0 * Y_1 + X_1 * Y_0
 | |
|  *   HI += X_1 * Y_1
 | |
|  *
 | |
|  * Later, the 256-bit result can be extracted as:
 | |
|  *   [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
 | |
|  * This step is done when computing the polynomial reduction for efficiency
 | |
|  * reasons.
 | |
|  *
 | |
|  * If xor_sum == 1, then also XOR the value of SUM into m_0.  This avoids an
 | |
|  * extra multiplication of SUM and h^8.
 | |
|  */
 | |
| .macro schoolbook1_iteration i xor_sum
 | |
| 	movups (16*\i)(MSG), %xmm0
 | |
| 	.if (\i == 0 && \xor_sum == 1)
 | |
| 		pxor SUM, %xmm0
 | |
| 	.endif
 | |
| 	vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
 | |
| 	vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
 | |
| 	vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
 | |
| 	vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
 | |
| 	vpxor %xmm2, MI, MI
 | |
| 	vpxor %xmm1, LO, LO
 | |
| 	vpxor %xmm4, HI, HI
 | |
| 	vpxor %xmm3, MI, MI
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Performs the same computation as schoolbook1_iteration, except we expect the
 | |
|  * arguments to already be loaded into xmm0 and xmm1 and we set the result
 | |
|  * registers LO, MI, and HI directly rather than XOR'ing into them.
 | |
|  */
 | |
| .macro schoolbook1_noload
 | |
| 	vpclmulqdq $0x01, %xmm0, %xmm1, MI
 | |
| 	vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
 | |
| 	vpclmulqdq $0x00, %xmm0, %xmm1, LO
 | |
| 	vpclmulqdq $0x11, %xmm0, %xmm1, HI
 | |
| 	vpxor %xmm2, MI, MI
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
 | |
|  * the result in PL, PH.
 | |
|  *   [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
 | |
|  */
 | |
| .macro schoolbook2
 | |
| 	vpslldq $8, MI, PL
 | |
| 	vpsrldq $8, MI, PH
 | |
| 	pxor LO, PL
 | |
| 	pxor HI, PH
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
 | |
|  *
 | |
|  * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
 | |
|  * x^128 + x^127 + x^126 + x^121 + 1.
 | |
|  *
 | |
|  * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
 | |
|  * product of two 128-bit polynomials in Montgomery form.  We need to reduce it
 | |
|  * mod g(x).  Also, since polynomials in Montgomery form have an "extra" factor
 | |
|  * of x^128, this product has two extra factors of x^128.  To get it back into
 | |
|  * Montgomery form, we need to remove one of these factors by dividing by x^128.
 | |
|  *
 | |
|  * To accomplish both of these goals, we add multiples of g(x) that cancel out
 | |
|  * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
 | |
|  * bits are zero, the polynomial division by x^128 can be done by right shifting.
 | |
|  *
 | |
|  * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
 | |
|  * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x).  The CPU can
 | |
|  * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
 | |
|  * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x).  Adding this to
 | |
|  * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
 | |
|  * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63 got "folded" into bits 64-191.
 | |
|  *
 | |
|  * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
 | |
|  * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
 | |
|  * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
 | |
|  * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
 | |
|  * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
 | |
|  *
 | |
|  * So our final computation is:
 | |
|  *   T = T_1 : T_0 = g*(x) * P_0
 | |
|  *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)
 | |
|  *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
 | |
|  *
 | |
|  * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
 | |
|  * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
 | |
|  * T_1 into dest.  This allows us to reuse P_1 + T_0 when computing V.
 | |
|  */
 | |
| .macro montgomery_reduction dest
 | |
| 	vpclmulqdq $0x00, PL, GSTAR, TMP_XMM	# TMP_XMM = T_1 : T_0 = P_0 * g*(x)
 | |
| 	pshufd $0b01001110, TMP_XMM, TMP_XMM	# TMP_XMM = T_0 : T_1
 | |
| 	pxor PL, TMP_XMM			# TMP_XMM = P_1 + T_0 : P_0 + T_1
 | |
| 	pxor TMP_XMM, PH			# PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
 | |
| 	pclmulqdq $0x11, GSTAR, TMP_XMM		# TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
 | |
| 	vpxor TMP_XMM, PH, \dest
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Compute schoolbook multiplication for 8 blocks
 | |
|  * m_0h^8 + ... + m_7h^1
 | |
|  *
 | |
|  * If reduce is set, also computes the montgomery reduction of the
 | |
|  * previous full_stride call and XORs with the first message block.
 | |
|  * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
 | |
|  * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
 | |
|  */
 | |
| .macro full_stride reduce
 | |
| 	pxor LO, LO
 | |
| 	pxor HI, HI
 | |
| 	pxor MI, MI
 | |
| 
 | |
| 	schoolbook1_iteration 7 0
 | |
| 	.if \reduce
 | |
| 		vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
 | |
| 	.endif
 | |
| 
 | |
| 	schoolbook1_iteration 6 0
 | |
| 	.if \reduce
 | |
| 		pshufd $0b01001110, TMP_XMM, TMP_XMM
 | |
| 	.endif
 | |
| 
 | |
| 	schoolbook1_iteration 5 0
 | |
| 	.if \reduce
 | |
| 		pxor PL, TMP_XMM
 | |
| 	.endif
 | |
| 
 | |
| 	schoolbook1_iteration 4 0
 | |
| 	.if \reduce
 | |
| 		pxor TMP_XMM, PH
 | |
| 	.endif
 | |
| 
 | |
| 	schoolbook1_iteration 3 0
 | |
| 	.if \reduce
 | |
| 		pclmulqdq $0x11, GSTAR, TMP_XMM
 | |
| 	.endif
 | |
| 
 | |
| 	schoolbook1_iteration 2 0
 | |
| 	.if \reduce
 | |
| 		vpxor TMP_XMM, PH, SUM
 | |
| 	.endif
 | |
| 
 | |
| 	schoolbook1_iteration 1 0
 | |
| 
 | |
| 	schoolbook1_iteration 0 1
 | |
| 
 | |
| 	addq $(8*16), MSG
 | |
| 	schoolbook2
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
 | |
|  */
 | |
| .macro partial_stride
 | |
| 	mov BLOCKS_LEFT, TMP
 | |
| 	shlq $4, TMP
 | |
| 	addq $(16*STRIDE_BLOCKS), KEY_POWERS
 | |
| 	subq TMP, KEY_POWERS
 | |
| 
 | |
| 	movups (MSG), %xmm0
 | |
| 	pxor SUM, %xmm0
 | |
| 	movaps (KEY_POWERS), %xmm1
 | |
| 	schoolbook1_noload
 | |
| 	dec BLOCKS_LEFT
 | |
| 	addq $16, MSG
 | |
| 	addq $16, KEY_POWERS
 | |
| 
 | |
| 	test $4, BLOCKS_LEFT
 | |
| 	jz .Lpartial4BlocksDone
 | |
| 	schoolbook1 4
 | |
| 	addq $(4*16), MSG
 | |
| 	addq $(4*16), KEY_POWERS
 | |
| .Lpartial4BlocksDone:
 | |
| 	test $2, BLOCKS_LEFT
 | |
| 	jz .Lpartial2BlocksDone
 | |
| 	schoolbook1 2
 | |
| 	addq $(2*16), MSG
 | |
| 	addq $(2*16), KEY_POWERS
 | |
| .Lpartial2BlocksDone:
 | |
| 	test $1, BLOCKS_LEFT
 | |
| 	jz .LpartialDone
 | |
| 	schoolbook1 1
 | |
| .LpartialDone:
 | |
| 	schoolbook2
 | |
| 	montgomery_reduction SUM
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Perform montgomery multiplication in GF(2^128) and store result in op1.
 | |
|  *
 | |
|  * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
 | |
|  * If op1, op2 are in montgomery form, this computes the montgomery
 | |
|  * form of op1*op2.
 | |
|  *
 | |
|  * void clmul_polyval_mul(u8 *op1, const u8 *op2);
 | |
|  */
 | |
| SYM_FUNC_START(clmul_polyval_mul)
 | |
| 	FRAME_BEGIN
 | |
| 	vmovdqa .Lgstar(%rip), GSTAR
 | |
| 	movups (%rdi), %xmm0
 | |
| 	movups (%rsi), %xmm1
 | |
| 	schoolbook1_noload
 | |
| 	schoolbook2
 | |
| 	montgomery_reduction SUM
 | |
| 	movups SUM, (%rdi)
 | |
| 	FRAME_END
 | |
| 	RET
 | |
| SYM_FUNC_END(clmul_polyval_mul)
 | |
| 
 | |
| /*
 | |
|  * Perform polynomial evaluation as specified by POLYVAL.  This computes:
 | |
|  *	h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
 | |
|  * where n=nblocks, h is the hash key, and m_i are the message blocks.
 | |
|  *
 | |
|  * rdi - pointer to precomputed key powers h^8 ... h^1
 | |
|  * rsi - pointer to message blocks
 | |
|  * rdx - number of blocks to hash
 | |
|  * rcx - pointer to the accumulator
 | |
|  *
 | |
|  * void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
 | |
|  *	const u8 *in, size_t nblocks, u8 *accumulator);
 | |
|  */
 | |
| SYM_FUNC_START(clmul_polyval_update)
 | |
| 	FRAME_BEGIN
 | |
| 	vmovdqa .Lgstar(%rip), GSTAR
 | |
| 	movups (ACCUMULATOR), SUM
 | |
| 	subq $STRIDE_BLOCKS, BLOCKS_LEFT
 | |
| 	js .LstrideLoopExit
 | |
| 	full_stride 0
 | |
| 	subq $STRIDE_BLOCKS, BLOCKS_LEFT
 | |
| 	js .LstrideLoopExitReduce
 | |
| .LstrideLoop:
 | |
| 	full_stride 1
 | |
| 	subq $STRIDE_BLOCKS, BLOCKS_LEFT
 | |
| 	jns .LstrideLoop
 | |
| .LstrideLoopExitReduce:
 | |
| 	montgomery_reduction SUM
 | |
| .LstrideLoopExit:
 | |
| 	add $STRIDE_BLOCKS, BLOCKS_LEFT
 | |
| 	jz .LskipPartial
 | |
| 	partial_stride
 | |
| .LskipPartial:
 | |
| 	movups SUM, (ACCUMULATOR)
 | |
| 	FRAME_END
 | |
| 	RET
 | |
| SYM_FUNC_END(clmul_polyval_update)
 |