2306 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2306 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * XArray implementation
 | |
|  * Copyright (c) 2017-2018 Microsoft Corporation
 | |
|  * Copyright (c) 2018-2020 Oracle
 | |
|  * Author: Matthew Wilcox <willy@infradead.org>
 | |
|  */
 | |
| 
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/xarray.h>
 | |
| 
 | |
| /*
 | |
|  * Coding conventions in this file:
 | |
|  *
 | |
|  * @xa is used to refer to the entire xarray.
 | |
|  * @xas is the 'xarray operation state'.  It may be either a pointer to
 | |
|  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
 | |
|  * ambiguity.
 | |
|  * @index is the index of the entry being operated on
 | |
|  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
 | |
|  * @node refers to an xa_node; usually the primary one being operated on by
 | |
|  * this function.
 | |
|  * @offset is the index into the slots array inside an xa_node.
 | |
|  * @parent refers to the @xa_node closer to the head than @node.
 | |
|  * @entry refers to something stored in a slot in the xarray
 | |
|  */
 | |
| 
 | |
| static inline unsigned int xa_lock_type(const struct xarray *xa)
 | |
| {
 | |
| 	return (__force unsigned int)xa->xa_flags & 3;
 | |
| }
 | |
| 
 | |
| static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
 | |
| {
 | |
| 	if (lock_type == XA_LOCK_IRQ)
 | |
| 		xas_lock_irq(xas);
 | |
| 	else if (lock_type == XA_LOCK_BH)
 | |
| 		xas_lock_bh(xas);
 | |
| 	else
 | |
| 		xas_lock(xas);
 | |
| }
 | |
| 
 | |
| static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
 | |
| {
 | |
| 	if (lock_type == XA_LOCK_IRQ)
 | |
| 		xas_unlock_irq(xas);
 | |
| 	else if (lock_type == XA_LOCK_BH)
 | |
| 		xas_unlock_bh(xas);
 | |
| 	else
 | |
| 		xas_unlock(xas);
 | |
| }
 | |
| 
 | |
| static inline bool xa_track_free(const struct xarray *xa)
 | |
| {
 | |
| 	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
 | |
| }
 | |
| 
 | |
| static inline bool xa_zero_busy(const struct xarray *xa)
 | |
| {
 | |
| 	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
 | |
| }
 | |
| 
 | |
| static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
 | |
| {
 | |
| 	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
 | |
| 		xa->xa_flags |= XA_FLAGS_MARK(mark);
 | |
| }
 | |
| 
 | |
| static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
 | |
| {
 | |
| 	if (xa->xa_flags & XA_FLAGS_MARK(mark))
 | |
| 		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
 | |
| }
 | |
| 
 | |
| static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
 | |
| {
 | |
| 	return node->marks[(__force unsigned)mark];
 | |
| }
 | |
| 
 | |
| static inline bool node_get_mark(struct xa_node *node,
 | |
| 		unsigned int offset, xa_mark_t mark)
 | |
| {
 | |
| 	return test_bit(offset, node_marks(node, mark));
 | |
| }
 | |
| 
 | |
| /* returns true if the bit was set */
 | |
| static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
 | |
| 				xa_mark_t mark)
 | |
| {
 | |
| 	return __test_and_set_bit(offset, node_marks(node, mark));
 | |
| }
 | |
| 
 | |
| /* returns true if the bit was set */
 | |
| static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
 | |
| 				xa_mark_t mark)
 | |
| {
 | |
| 	return __test_and_clear_bit(offset, node_marks(node, mark));
 | |
| }
 | |
| 
 | |
| static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
 | |
| {
 | |
| 	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
 | |
| }
 | |
| 
 | |
| static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
 | |
| {
 | |
| 	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
 | |
| }
 | |
| 
 | |
| #define mark_inc(mark) do { \
 | |
| 	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * xas_squash_marks() - Merge all marks to the first entry
 | |
|  * @xas: Array operation state.
 | |
|  *
 | |
|  * Set a mark on the first entry if any entry has it set.  Clear marks on
 | |
|  * all sibling entries.
 | |
|  */
 | |
| static void xas_squash_marks(const struct xa_state *xas)
 | |
| {
 | |
| 	unsigned int mark = 0;
 | |
| 	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
 | |
| 
 | |
| 	if (!xas->xa_sibs)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long *marks = xas->xa_node->marks[mark];
 | |
| 		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
 | |
| 			continue;
 | |
| 		__set_bit(xas->xa_offset, marks);
 | |
| 		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
 | |
| 	} while (mark++ != (__force unsigned)XA_MARK_MAX);
 | |
| }
 | |
| 
 | |
| /* extracts the offset within this node from the index */
 | |
| static unsigned int get_offset(unsigned long index, struct xa_node *node)
 | |
| {
 | |
| 	return (index >> node->shift) & XA_CHUNK_MASK;
 | |
| }
 | |
| 
 | |
| static void xas_set_offset(struct xa_state *xas)
 | |
| {
 | |
| 	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
 | |
| }
 | |
| 
 | |
| /* move the index either forwards (find) or backwards (sibling slot) */
 | |
| static void xas_move_index(struct xa_state *xas, unsigned long offset)
 | |
| {
 | |
| 	unsigned int shift = xas->xa_node->shift;
 | |
| 	xas->xa_index &= ~XA_CHUNK_MASK << shift;
 | |
| 	xas->xa_index += offset << shift;
 | |
| }
 | |
| 
 | |
| static void xas_next_offset(struct xa_state *xas)
 | |
| {
 | |
| 	xas->xa_offset++;
 | |
| 	xas_move_index(xas, xas->xa_offset);
 | |
| }
 | |
| 
 | |
| static void *set_bounds(struct xa_state *xas)
 | |
| {
 | |
| 	xas->xa_node = XAS_BOUNDS;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Starts a walk.  If the @xas is already valid, we assume that it's on
 | |
|  * the right path and just return where we've got to.  If we're in an
 | |
|  * error state, return NULL.  If the index is outside the current scope
 | |
|  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
 | |
|  * set @xas->xa_node to NULL and return the current head of the array.
 | |
|  */
 | |
| static void *xas_start(struct xa_state *xas)
 | |
| {
 | |
| 	void *entry;
 | |
| 
 | |
| 	if (xas_valid(xas))
 | |
| 		return xas_reload(xas);
 | |
| 	if (xas_error(xas))
 | |
| 		return NULL;
 | |
| 
 | |
| 	entry = xa_head(xas->xa);
 | |
| 	if (!xa_is_node(entry)) {
 | |
| 		if (xas->xa_index)
 | |
| 			return set_bounds(xas);
 | |
| 	} else {
 | |
| 		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
 | |
| 			return set_bounds(xas);
 | |
| 	}
 | |
| 
 | |
| 	xas->xa_node = NULL;
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static void *xas_descend(struct xa_state *xas, struct xa_node *node)
 | |
| {
 | |
| 	unsigned int offset = get_offset(xas->xa_index, node);
 | |
| 	void *entry = xa_entry(xas->xa, node, offset);
 | |
| 
 | |
| 	xas->xa_node = node;
 | |
| 	while (xa_is_sibling(entry)) {
 | |
| 		offset = xa_to_sibling(entry);
 | |
| 		entry = xa_entry(xas->xa, node, offset);
 | |
| 		if (node->shift && xa_is_node(entry))
 | |
| 			entry = XA_RETRY_ENTRY;
 | |
| 	}
 | |
| 
 | |
| 	xas->xa_offset = offset;
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xas_load() - Load an entry from the XArray (advanced).
 | |
|  * @xas: XArray operation state.
 | |
|  *
 | |
|  * Usually walks the @xas to the appropriate state to load the entry
 | |
|  * stored at xa_index.  However, it will do nothing and return %NULL if
 | |
|  * @xas is in an error state.  xas_load() will never expand the tree.
 | |
|  *
 | |
|  * If the xa_state is set up to operate on a multi-index entry, xas_load()
 | |
|  * may return %NULL or an internal entry, even if there are entries
 | |
|  * present within the range specified by @xas.
 | |
|  *
 | |
|  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
 | |
|  * Return: Usually an entry in the XArray, but see description for exceptions.
 | |
|  */
 | |
| void *xas_load(struct xa_state *xas)
 | |
| {
 | |
| 	void *entry = xas_start(xas);
 | |
| 
 | |
| 	while (xa_is_node(entry)) {
 | |
| 		struct xa_node *node = xa_to_node(entry);
 | |
| 
 | |
| 		if (xas->xa_shift > node->shift)
 | |
| 			break;
 | |
| 		entry = xas_descend(xas, node);
 | |
| 		if (node->shift == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	return entry;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_load);
 | |
| 
 | |
| /* Move the radix tree node cache here */
 | |
| extern struct kmem_cache *radix_tree_node_cachep;
 | |
| extern void radix_tree_node_rcu_free(struct rcu_head *head);
 | |
| 
 | |
| #define XA_RCU_FREE	((struct xarray *)1)
 | |
| 
 | |
| static void xa_node_free(struct xa_node *node)
 | |
| {
 | |
| 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 | |
| 	node->array = XA_RCU_FREE;
 | |
| 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xas_destroy() - Free any resources allocated during the XArray operation.
 | |
|  * @xas: XArray operation state.
 | |
|  *
 | |
|  * Most users will not need to call this function; it is called for you
 | |
|  * by xas_nomem().
 | |
|  */
 | |
| void xas_destroy(struct xa_state *xas)
 | |
| {
 | |
| 	struct xa_node *next, *node = xas->xa_alloc;
 | |
| 
 | |
| 	while (node) {
 | |
| 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 | |
| 		next = rcu_dereference_raw(node->parent);
 | |
| 		radix_tree_node_rcu_free(&node->rcu_head);
 | |
| 		xas->xa_alloc = node = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xas_nomem() - Allocate memory if needed.
 | |
|  * @xas: XArray operation state.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * If we need to add new nodes to the XArray, we try to allocate memory
 | |
|  * with GFP_NOWAIT while holding the lock, which will usually succeed.
 | |
|  * If it fails, @xas is flagged as needing memory to continue.  The caller
 | |
|  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
 | |
|  * the caller should retry the operation.
 | |
|  *
 | |
|  * Forward progress is guaranteed as one node is allocated here and
 | |
|  * stored in the xa_state where it will be found by xas_alloc().  More
 | |
|  * nodes will likely be found in the slab allocator, but we do not tie
 | |
|  * them up here.
 | |
|  *
 | |
|  * Return: true if memory was needed, and was successfully allocated.
 | |
|  */
 | |
| bool xas_nomem(struct xa_state *xas, gfp_t gfp)
 | |
| {
 | |
| 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
 | |
| 		xas_destroy(xas);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 | |
| 		gfp |= __GFP_ACCOUNT;
 | |
| 	xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
 | |
| 	if (!xas->xa_alloc)
 | |
| 		return false;
 | |
| 	xas->xa_alloc->parent = NULL;
 | |
| 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
 | |
| 	xas->xa_node = XAS_RESTART;
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_nomem);
 | |
| 
 | |
| /*
 | |
|  * __xas_nomem() - Drop locks and allocate memory if needed.
 | |
|  * @xas: XArray operation state.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * Internal variant of xas_nomem().
 | |
|  *
 | |
|  * Return: true if memory was needed, and was successfully allocated.
 | |
|  */
 | |
| static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
 | |
| 	__must_hold(xas->xa->xa_lock)
 | |
| {
 | |
| 	unsigned int lock_type = xa_lock_type(xas->xa);
 | |
| 
 | |
| 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
 | |
| 		xas_destroy(xas);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 | |
| 		gfp |= __GFP_ACCOUNT;
 | |
| 	if (gfpflags_allow_blocking(gfp)) {
 | |
| 		xas_unlock_type(xas, lock_type);
 | |
| 		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
 | |
| 		xas_lock_type(xas, lock_type);
 | |
| 	} else {
 | |
| 		xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
 | |
| 	}
 | |
| 	if (!xas->xa_alloc)
 | |
| 		return false;
 | |
| 	xas->xa_alloc->parent = NULL;
 | |
| 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
 | |
| 	xas->xa_node = XAS_RESTART;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void xas_update(struct xa_state *xas, struct xa_node *node)
 | |
| {
 | |
| 	if (xas->xa_update)
 | |
| 		xas->xa_update(node);
 | |
| 	else
 | |
| 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 | |
| }
 | |
| 
 | |
| static void *xas_alloc(struct xa_state *xas, unsigned int shift)
 | |
| {
 | |
| 	struct xa_node *parent = xas->xa_node;
 | |
| 	struct xa_node *node = xas->xa_alloc;
 | |
| 
 | |
| 	if (xas_invalid(xas))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (node) {
 | |
| 		xas->xa_alloc = NULL;
 | |
| 	} else {
 | |
| 		gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
 | |
| 
 | |
| 		if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 | |
| 			gfp |= __GFP_ACCOUNT;
 | |
| 
 | |
| 		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
 | |
| 		if (!node) {
 | |
| 			xas_set_err(xas, -ENOMEM);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (parent) {
 | |
| 		node->offset = xas->xa_offset;
 | |
| 		parent->count++;
 | |
| 		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
 | |
| 		xas_update(xas, parent);
 | |
| 	}
 | |
| 	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
 | |
| 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 | |
| 	node->shift = shift;
 | |
| 	node->count = 0;
 | |
| 	node->nr_values = 0;
 | |
| 	RCU_INIT_POINTER(node->parent, xas->xa_node);
 | |
| 	node->array = xas->xa;
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_XARRAY_MULTI
 | |
| /* Returns the number of indices covered by a given xa_state */
 | |
| static unsigned long xas_size(const struct xa_state *xas)
 | |
| {
 | |
| 	return (xas->xa_sibs + 1UL) << xas->xa_shift;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Use this to calculate the maximum index that will need to be created
 | |
|  * in order to add the entry described by @xas.  Because we cannot store a
 | |
|  * multi-index entry at index 0, the calculation is a little more complex
 | |
|  * than you might expect.
 | |
|  */
 | |
| static unsigned long xas_max(struct xa_state *xas)
 | |
| {
 | |
| 	unsigned long max = xas->xa_index;
 | |
| 
 | |
| #ifdef CONFIG_XARRAY_MULTI
 | |
| 	if (xas->xa_shift || xas->xa_sibs) {
 | |
| 		unsigned long mask = xas_size(xas) - 1;
 | |
| 		max |= mask;
 | |
| 		if (mask == max)
 | |
| 			max++;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return max;
 | |
| }
 | |
| 
 | |
| /* The maximum index that can be contained in the array without expanding it */
 | |
| static unsigned long max_index(void *entry)
 | |
| {
 | |
| 	if (!xa_is_node(entry))
 | |
| 		return 0;
 | |
| 	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
 | |
| }
 | |
| 
 | |
| static void xas_shrink(struct xa_state *xas)
 | |
| {
 | |
| 	struct xarray *xa = xas->xa;
 | |
| 	struct xa_node *node = xas->xa_node;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		void *entry;
 | |
| 
 | |
| 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 | |
| 		if (node->count != 1)
 | |
| 			break;
 | |
| 		entry = xa_entry_locked(xa, node, 0);
 | |
| 		if (!entry)
 | |
| 			break;
 | |
| 		if (!xa_is_node(entry) && node->shift)
 | |
| 			break;
 | |
| 		if (xa_is_zero(entry) && xa_zero_busy(xa))
 | |
| 			entry = NULL;
 | |
| 		xas->xa_node = XAS_BOUNDS;
 | |
| 
 | |
| 		RCU_INIT_POINTER(xa->xa_head, entry);
 | |
| 		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
 | |
| 			xa_mark_clear(xa, XA_FREE_MARK);
 | |
| 
 | |
| 		node->count = 0;
 | |
| 		node->nr_values = 0;
 | |
| 		if (!xa_is_node(entry))
 | |
| 			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
 | |
| 		xas_update(xas, node);
 | |
| 		xa_node_free(node);
 | |
| 		if (!xa_is_node(entry))
 | |
| 			break;
 | |
| 		node = xa_to_node(entry);
 | |
| 		node->parent = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xas_delete_node() - Attempt to delete an xa_node
 | |
|  * @xas: Array operation state.
 | |
|  *
 | |
|  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
 | |
|  * a non-zero reference count.
 | |
|  */
 | |
| static void xas_delete_node(struct xa_state *xas)
 | |
| {
 | |
| 	struct xa_node *node = xas->xa_node;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct xa_node *parent;
 | |
| 
 | |
| 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 | |
| 		if (node->count)
 | |
| 			break;
 | |
| 
 | |
| 		parent = xa_parent_locked(xas->xa, node);
 | |
| 		xas->xa_node = parent;
 | |
| 		xas->xa_offset = node->offset;
 | |
| 		xa_node_free(node);
 | |
| 
 | |
| 		if (!parent) {
 | |
| 			xas->xa->xa_head = NULL;
 | |
| 			xas->xa_node = XAS_BOUNDS;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		parent->slots[xas->xa_offset] = NULL;
 | |
| 		parent->count--;
 | |
| 		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
 | |
| 		node = parent;
 | |
| 		xas_update(xas, node);
 | |
| 	}
 | |
| 
 | |
| 	if (!node->parent)
 | |
| 		xas_shrink(xas);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xas_free_nodes() - Free this node and all nodes that it references
 | |
|  * @xas: Array operation state.
 | |
|  * @top: Node to free
 | |
|  *
 | |
|  * This node has been removed from the tree.  We must now free it and all
 | |
|  * of its subnodes.  There may be RCU walkers with references into the tree,
 | |
|  * so we must replace all entries with retry markers.
 | |
|  */
 | |
| static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
 | |
| {
 | |
| 	unsigned int offset = 0;
 | |
| 	struct xa_node *node = top;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		void *entry = xa_entry_locked(xas->xa, node, offset);
 | |
| 
 | |
| 		if (node->shift && xa_is_node(entry)) {
 | |
| 			node = xa_to_node(entry);
 | |
| 			offset = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (entry)
 | |
| 			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
 | |
| 		offset++;
 | |
| 		while (offset == XA_CHUNK_SIZE) {
 | |
| 			struct xa_node *parent;
 | |
| 
 | |
| 			parent = xa_parent_locked(xas->xa, node);
 | |
| 			offset = node->offset + 1;
 | |
| 			node->count = 0;
 | |
| 			node->nr_values = 0;
 | |
| 			xas_update(xas, node);
 | |
| 			xa_node_free(node);
 | |
| 			if (node == top)
 | |
| 				return;
 | |
| 			node = parent;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xas_expand adds nodes to the head of the tree until it has reached
 | |
|  * sufficient height to be able to contain @xas->xa_index
 | |
|  */
 | |
| static int xas_expand(struct xa_state *xas, void *head)
 | |
| {
 | |
| 	struct xarray *xa = xas->xa;
 | |
| 	struct xa_node *node = NULL;
 | |
| 	unsigned int shift = 0;
 | |
| 	unsigned long max = xas_max(xas);
 | |
| 
 | |
| 	if (!head) {
 | |
| 		if (max == 0)
 | |
| 			return 0;
 | |
| 		while ((max >> shift) >= XA_CHUNK_SIZE)
 | |
| 			shift += XA_CHUNK_SHIFT;
 | |
| 		return shift + XA_CHUNK_SHIFT;
 | |
| 	} else if (xa_is_node(head)) {
 | |
| 		node = xa_to_node(head);
 | |
| 		shift = node->shift + XA_CHUNK_SHIFT;
 | |
| 	}
 | |
| 	xas->xa_node = NULL;
 | |
| 
 | |
| 	while (max > max_index(head)) {
 | |
| 		xa_mark_t mark = 0;
 | |
| 
 | |
| 		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
 | |
| 		node = xas_alloc(xas, shift);
 | |
| 		if (!node)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		node->count = 1;
 | |
| 		if (xa_is_value(head))
 | |
| 			node->nr_values = 1;
 | |
| 		RCU_INIT_POINTER(node->slots[0], head);
 | |
| 
 | |
| 		/* Propagate the aggregated mark info to the new child */
 | |
| 		for (;;) {
 | |
| 			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
 | |
| 				node_mark_all(node, XA_FREE_MARK);
 | |
| 				if (!xa_marked(xa, XA_FREE_MARK)) {
 | |
| 					node_clear_mark(node, 0, XA_FREE_MARK);
 | |
| 					xa_mark_set(xa, XA_FREE_MARK);
 | |
| 				}
 | |
| 			} else if (xa_marked(xa, mark)) {
 | |
| 				node_set_mark(node, 0, mark);
 | |
| 			}
 | |
| 			if (mark == XA_MARK_MAX)
 | |
| 				break;
 | |
| 			mark_inc(mark);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that the new node is fully initialised, we can add
 | |
| 		 * it to the tree
 | |
| 		 */
 | |
| 		if (xa_is_node(head)) {
 | |
| 			xa_to_node(head)->offset = 0;
 | |
| 			rcu_assign_pointer(xa_to_node(head)->parent, node);
 | |
| 		}
 | |
| 		head = xa_mk_node(node);
 | |
| 		rcu_assign_pointer(xa->xa_head, head);
 | |
| 		xas_update(xas, node);
 | |
| 
 | |
| 		shift += XA_CHUNK_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	xas->xa_node = node;
 | |
| 	return shift;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xas_create() - Create a slot to store an entry in.
 | |
|  * @xas: XArray operation state.
 | |
|  * @allow_root: %true if we can store the entry in the root directly
 | |
|  *
 | |
|  * Most users will not need to call this function directly, as it is called
 | |
|  * by xas_store().  It is useful for doing conditional store operations
 | |
|  * (see the xa_cmpxchg() implementation for an example).
 | |
|  *
 | |
|  * Return: If the slot already existed, returns the contents of this slot.
 | |
|  * If the slot was newly created, returns %NULL.  If it failed to create the
 | |
|  * slot, returns %NULL and indicates the error in @xas.
 | |
|  */
 | |
| static void *xas_create(struct xa_state *xas, bool allow_root)
 | |
| {
 | |
| 	struct xarray *xa = xas->xa;
 | |
| 	void *entry;
 | |
| 	void __rcu **slot;
 | |
| 	struct xa_node *node = xas->xa_node;
 | |
| 	int shift;
 | |
| 	unsigned int order = xas->xa_shift;
 | |
| 
 | |
| 	if (xas_top(node)) {
 | |
| 		entry = xa_head_locked(xa);
 | |
| 		xas->xa_node = NULL;
 | |
| 		if (!entry && xa_zero_busy(xa))
 | |
| 			entry = XA_ZERO_ENTRY;
 | |
| 		shift = xas_expand(xas, entry);
 | |
| 		if (shift < 0)
 | |
| 			return NULL;
 | |
| 		if (!shift && !allow_root)
 | |
| 			shift = XA_CHUNK_SHIFT;
 | |
| 		entry = xa_head_locked(xa);
 | |
| 		slot = &xa->xa_head;
 | |
| 	} else if (xas_error(xas)) {
 | |
| 		return NULL;
 | |
| 	} else if (node) {
 | |
| 		unsigned int offset = xas->xa_offset;
 | |
| 
 | |
| 		shift = node->shift;
 | |
| 		entry = xa_entry_locked(xa, node, offset);
 | |
| 		slot = &node->slots[offset];
 | |
| 	} else {
 | |
| 		shift = 0;
 | |
| 		entry = xa_head_locked(xa);
 | |
| 		slot = &xa->xa_head;
 | |
| 	}
 | |
| 
 | |
| 	while (shift > order) {
 | |
| 		shift -= XA_CHUNK_SHIFT;
 | |
| 		if (!entry) {
 | |
| 			node = xas_alloc(xas, shift);
 | |
| 			if (!node)
 | |
| 				break;
 | |
| 			if (xa_track_free(xa))
 | |
| 				node_mark_all(node, XA_FREE_MARK);
 | |
| 			rcu_assign_pointer(*slot, xa_mk_node(node));
 | |
| 		} else if (xa_is_node(entry)) {
 | |
| 			node = xa_to_node(entry);
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 		entry = xas_descend(xas, node);
 | |
| 		slot = &node->slots[xas->xa_offset];
 | |
| 	}
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xas_create_range() - Ensure that stores to this range will succeed
 | |
|  * @xas: XArray operation state.
 | |
|  *
 | |
|  * Creates all of the slots in the range covered by @xas.  Sets @xas to
 | |
|  * create single-index entries and positions it at the beginning of the
 | |
|  * range.  This is for the benefit of users which have not yet been
 | |
|  * converted to use multi-index entries.
 | |
|  */
 | |
| void xas_create_range(struct xa_state *xas)
 | |
| {
 | |
| 	unsigned long index = xas->xa_index;
 | |
| 	unsigned char shift = xas->xa_shift;
 | |
| 	unsigned char sibs = xas->xa_sibs;
 | |
| 
 | |
| 	xas->xa_index |= ((sibs + 1UL) << shift) - 1;
 | |
| 	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
 | |
| 		xas->xa_offset |= sibs;
 | |
| 	xas->xa_shift = 0;
 | |
| 	xas->xa_sibs = 0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		xas_create(xas, true);
 | |
| 		if (xas_error(xas))
 | |
| 			goto restore;
 | |
| 		if (xas->xa_index <= (index | XA_CHUNK_MASK))
 | |
| 			goto success;
 | |
| 		xas->xa_index -= XA_CHUNK_SIZE;
 | |
| 
 | |
| 		for (;;) {
 | |
| 			struct xa_node *node = xas->xa_node;
 | |
| 			if (node->shift >= shift)
 | |
| 				break;
 | |
| 			xas->xa_node = xa_parent_locked(xas->xa, node);
 | |
| 			xas->xa_offset = node->offset - 1;
 | |
| 			if (node->offset != 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| restore:
 | |
| 	xas->xa_shift = shift;
 | |
| 	xas->xa_sibs = sibs;
 | |
| 	xas->xa_index = index;
 | |
| 	return;
 | |
| success:
 | |
| 	xas->xa_index = index;
 | |
| 	if (xas->xa_node)
 | |
| 		xas_set_offset(xas);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_create_range);
 | |
| 
 | |
| static void update_node(struct xa_state *xas, struct xa_node *node,
 | |
| 		int count, int values)
 | |
| {
 | |
| 	if (!node || (!count && !values))
 | |
| 		return;
 | |
| 
 | |
| 	node->count += count;
 | |
| 	node->nr_values += values;
 | |
| 	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 | |
| 	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
 | |
| 	xas_update(xas, node);
 | |
| 	if (count < 0)
 | |
| 		xas_delete_node(xas);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xas_store() - Store this entry in the XArray.
 | |
|  * @xas: XArray operation state.
 | |
|  * @entry: New entry.
 | |
|  *
 | |
|  * If @xas is operating on a multi-index entry, the entry returned by this
 | |
|  * function is essentially meaningless (it may be an internal entry or it
 | |
|  * may be %NULL, even if there are non-NULL entries at some of the indices
 | |
|  * covered by the range).  This is not a problem for any current users,
 | |
|  * and can be changed if needed.
 | |
|  *
 | |
|  * Return: The old entry at this index.
 | |
|  */
 | |
| void *xas_store(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	struct xa_node *node;
 | |
| 	void __rcu **slot = &xas->xa->xa_head;
 | |
| 	unsigned int offset, max;
 | |
| 	int count = 0;
 | |
| 	int values = 0;
 | |
| 	void *first, *next;
 | |
| 	bool value = xa_is_value(entry);
 | |
| 
 | |
| 	if (entry) {
 | |
| 		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
 | |
| 		first = xas_create(xas, allow_root);
 | |
| 	} else {
 | |
| 		first = xas_load(xas);
 | |
| 	}
 | |
| 
 | |
| 	if (xas_invalid(xas))
 | |
| 		return first;
 | |
| 	node = xas->xa_node;
 | |
| 	if (node && (xas->xa_shift < node->shift))
 | |
| 		xas->xa_sibs = 0;
 | |
| 	if ((first == entry) && !xas->xa_sibs)
 | |
| 		return first;
 | |
| 
 | |
| 	next = first;
 | |
| 	offset = xas->xa_offset;
 | |
| 	max = xas->xa_offset + xas->xa_sibs;
 | |
| 	if (node) {
 | |
| 		slot = &node->slots[offset];
 | |
| 		if (xas->xa_sibs)
 | |
| 			xas_squash_marks(xas);
 | |
| 	}
 | |
| 	if (!entry)
 | |
| 		xas_init_marks(xas);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * Must clear the marks before setting the entry to NULL,
 | |
| 		 * otherwise xas_for_each_marked may find a NULL entry and
 | |
| 		 * stop early.  rcu_assign_pointer contains a release barrier
 | |
| 		 * so the mark clearing will appear to happen before the
 | |
| 		 * entry is set to NULL.
 | |
| 		 */
 | |
| 		rcu_assign_pointer(*slot, entry);
 | |
| 		if (xa_is_node(next) && (!node || node->shift))
 | |
| 			xas_free_nodes(xas, xa_to_node(next));
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 		count += !next - !entry;
 | |
| 		values += !xa_is_value(first) - !value;
 | |
| 		if (entry) {
 | |
| 			if (offset == max)
 | |
| 				break;
 | |
| 			if (!xa_is_sibling(entry))
 | |
| 				entry = xa_mk_sibling(xas->xa_offset);
 | |
| 		} else {
 | |
| 			if (offset == XA_CHUNK_MASK)
 | |
| 				break;
 | |
| 		}
 | |
| 		next = xa_entry_locked(xas->xa, node, ++offset);
 | |
| 		if (!xa_is_sibling(next)) {
 | |
| 			if (!entry && (offset > max))
 | |
| 				break;
 | |
| 			first = next;
 | |
| 		}
 | |
| 		slot++;
 | |
| 	}
 | |
| 
 | |
| 	update_node(xas, node, count, values);
 | |
| 	return first;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_store);
 | |
| 
 | |
| /**
 | |
|  * xas_get_mark() - Returns the state of this mark.
 | |
|  * @xas: XArray operation state.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * Return: true if the mark is set, false if the mark is clear or @xas
 | |
|  * is in an error state.
 | |
|  */
 | |
| bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
 | |
| {
 | |
| 	if (xas_invalid(xas))
 | |
| 		return false;
 | |
| 	if (!xas->xa_node)
 | |
| 		return xa_marked(xas->xa, mark);
 | |
| 	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_get_mark);
 | |
| 
 | |
| /**
 | |
|  * xas_set_mark() - Sets the mark on this entry and its parents.
 | |
|  * @xas: XArray operation state.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * Sets the specified mark on this entry, and walks up the tree setting it
 | |
|  * on all the ancestor entries.  Does nothing if @xas has not been walked to
 | |
|  * an entry, or is in an error state.
 | |
|  */
 | |
| void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
 | |
| {
 | |
| 	struct xa_node *node = xas->xa_node;
 | |
| 	unsigned int offset = xas->xa_offset;
 | |
| 
 | |
| 	if (xas_invalid(xas))
 | |
| 		return;
 | |
| 
 | |
| 	while (node) {
 | |
| 		if (node_set_mark(node, offset, mark))
 | |
| 			return;
 | |
| 		offset = node->offset;
 | |
| 		node = xa_parent_locked(xas->xa, node);
 | |
| 	}
 | |
| 
 | |
| 	if (!xa_marked(xas->xa, mark))
 | |
| 		xa_mark_set(xas->xa, mark);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_set_mark);
 | |
| 
 | |
| /**
 | |
|  * xas_clear_mark() - Clears the mark on this entry and its parents.
 | |
|  * @xas: XArray operation state.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * Clears the specified mark on this entry, and walks back to the head
 | |
|  * attempting to clear it on all the ancestor entries.  Does nothing if
 | |
|  * @xas has not been walked to an entry, or is in an error state.
 | |
|  */
 | |
| void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
 | |
| {
 | |
| 	struct xa_node *node = xas->xa_node;
 | |
| 	unsigned int offset = xas->xa_offset;
 | |
| 
 | |
| 	if (xas_invalid(xas))
 | |
| 		return;
 | |
| 
 | |
| 	while (node) {
 | |
| 		if (!node_clear_mark(node, offset, mark))
 | |
| 			return;
 | |
| 		if (node_any_mark(node, mark))
 | |
| 			return;
 | |
| 
 | |
| 		offset = node->offset;
 | |
| 		node = xa_parent_locked(xas->xa, node);
 | |
| 	}
 | |
| 
 | |
| 	if (xa_marked(xas->xa, mark))
 | |
| 		xa_mark_clear(xas->xa, mark);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_clear_mark);
 | |
| 
 | |
| /**
 | |
|  * xas_init_marks() - Initialise all marks for the entry
 | |
|  * @xas: Array operations state.
 | |
|  *
 | |
|  * Initialise all marks for the entry specified by @xas.  If we're tracking
 | |
|  * free entries with a mark, we need to set it on all entries.  All other
 | |
|  * marks are cleared.
 | |
|  *
 | |
|  * This implementation is not as efficient as it could be; we may walk
 | |
|  * up the tree multiple times.
 | |
|  */
 | |
| void xas_init_marks(const struct xa_state *xas)
 | |
| {
 | |
| 	xa_mark_t mark = 0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
 | |
| 			xas_set_mark(xas, mark);
 | |
| 		else
 | |
| 			xas_clear_mark(xas, mark);
 | |
| 		if (mark == XA_MARK_MAX)
 | |
| 			break;
 | |
| 		mark_inc(mark);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_init_marks);
 | |
| 
 | |
| #ifdef CONFIG_XARRAY_MULTI
 | |
| static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
 | |
| {
 | |
| 	unsigned int marks = 0;
 | |
| 	xa_mark_t mark = XA_MARK_0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (node_get_mark(node, offset, mark))
 | |
| 			marks |= 1 << (__force unsigned int)mark;
 | |
| 		if (mark == XA_MARK_MAX)
 | |
| 			break;
 | |
| 		mark_inc(mark);
 | |
| 	}
 | |
| 
 | |
| 	return marks;
 | |
| }
 | |
| 
 | |
| static void node_set_marks(struct xa_node *node, unsigned int offset,
 | |
| 			struct xa_node *child, unsigned int marks)
 | |
| {
 | |
| 	xa_mark_t mark = XA_MARK_0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (marks & (1 << (__force unsigned int)mark)) {
 | |
| 			node_set_mark(node, offset, mark);
 | |
| 			if (child)
 | |
| 				node_mark_all(child, mark);
 | |
| 		}
 | |
| 		if (mark == XA_MARK_MAX)
 | |
| 			break;
 | |
| 		mark_inc(mark);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xas_split_alloc() - Allocate memory for splitting an entry.
 | |
|  * @xas: XArray operation state.
 | |
|  * @entry: New entry which will be stored in the array.
 | |
|  * @order: Current entry order.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * This function should be called before calling xas_split().
 | |
|  * If necessary, it will allocate new nodes (and fill them with @entry)
 | |
|  * to prepare for the upcoming split of an entry of @order size into
 | |
|  * entries of the order stored in the @xas.
 | |
|  *
 | |
|  * Context: May sleep if @gfp flags permit.
 | |
|  */
 | |
| void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
 | |
| 		gfp_t gfp)
 | |
| {
 | |
| 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
 | |
| 	unsigned int mask = xas->xa_sibs;
 | |
| 
 | |
| 	/* XXX: no support for splitting really large entries yet */
 | |
| 	if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
 | |
| 		goto nomem;
 | |
| 	if (xas->xa_shift + XA_CHUNK_SHIFT > order)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int i;
 | |
| 		void *sibling = NULL;
 | |
| 		struct xa_node *node;
 | |
| 
 | |
| 		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
 | |
| 		if (!node)
 | |
| 			goto nomem;
 | |
| 		node->array = xas->xa;
 | |
| 		for (i = 0; i < XA_CHUNK_SIZE; i++) {
 | |
| 			if ((i & mask) == 0) {
 | |
| 				RCU_INIT_POINTER(node->slots[i], entry);
 | |
| 				sibling = xa_mk_sibling(i);
 | |
| 			} else {
 | |
| 				RCU_INIT_POINTER(node->slots[i], sibling);
 | |
| 			}
 | |
| 		}
 | |
| 		RCU_INIT_POINTER(node->parent, xas->xa_alloc);
 | |
| 		xas->xa_alloc = node;
 | |
| 	} while (sibs-- > 0);
 | |
| 
 | |
| 	return;
 | |
| nomem:
 | |
| 	xas_destroy(xas);
 | |
| 	xas_set_err(xas, -ENOMEM);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_split_alloc);
 | |
| 
 | |
| /**
 | |
|  * xas_split() - Split a multi-index entry into smaller entries.
 | |
|  * @xas: XArray operation state.
 | |
|  * @entry: New entry to store in the array.
 | |
|  * @order: Current entry order.
 | |
|  *
 | |
|  * The size of the new entries is set in @xas.  The value in @entry is
 | |
|  * copied to all the replacement entries.
 | |
|  *
 | |
|  * Context: Any context.  The caller should hold the xa_lock.
 | |
|  */
 | |
| void xas_split(struct xa_state *xas, void *entry, unsigned int order)
 | |
| {
 | |
| 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
 | |
| 	unsigned int offset, marks;
 | |
| 	struct xa_node *node;
 | |
| 	void *curr = xas_load(xas);
 | |
| 	int values = 0;
 | |
| 
 | |
| 	node = xas->xa_node;
 | |
| 	if (xas_top(node))
 | |
| 		return;
 | |
| 
 | |
| 	marks = node_get_marks(node, xas->xa_offset);
 | |
| 
 | |
| 	offset = xas->xa_offset + sibs;
 | |
| 	do {
 | |
| 		if (xas->xa_shift < node->shift) {
 | |
| 			struct xa_node *child = xas->xa_alloc;
 | |
| 
 | |
| 			xas->xa_alloc = rcu_dereference_raw(child->parent);
 | |
| 			child->shift = node->shift - XA_CHUNK_SHIFT;
 | |
| 			child->offset = offset;
 | |
| 			child->count = XA_CHUNK_SIZE;
 | |
| 			child->nr_values = xa_is_value(entry) ?
 | |
| 					XA_CHUNK_SIZE : 0;
 | |
| 			RCU_INIT_POINTER(child->parent, node);
 | |
| 			node_set_marks(node, offset, child, marks);
 | |
| 			rcu_assign_pointer(node->slots[offset],
 | |
| 					xa_mk_node(child));
 | |
| 			if (xa_is_value(curr))
 | |
| 				values--;
 | |
| 			xas_update(xas, child);
 | |
| 		} else {
 | |
| 			unsigned int canon = offset - xas->xa_sibs;
 | |
| 
 | |
| 			node_set_marks(node, canon, NULL, marks);
 | |
| 			rcu_assign_pointer(node->slots[canon], entry);
 | |
| 			while (offset > canon)
 | |
| 				rcu_assign_pointer(node->slots[offset--],
 | |
| 						xa_mk_sibling(canon));
 | |
| 			values += (xa_is_value(entry) - xa_is_value(curr)) *
 | |
| 					(xas->xa_sibs + 1);
 | |
| 		}
 | |
| 	} while (offset-- > xas->xa_offset);
 | |
| 
 | |
| 	node->nr_values += values;
 | |
| 	xas_update(xas, node);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_split);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * xas_pause() - Pause a walk to drop a lock.
 | |
|  * @xas: XArray operation state.
 | |
|  *
 | |
|  * Some users need to pause a walk and drop the lock they're holding in
 | |
|  * order to yield to a higher priority thread or carry out an operation
 | |
|  * on an entry.  Those users should call this function before they drop
 | |
|  * the lock.  It resets the @xas to be suitable for the next iteration
 | |
|  * of the loop after the user has reacquired the lock.  If most entries
 | |
|  * found during a walk require you to call xas_pause(), the xa_for_each()
 | |
|  * iterator may be more appropriate.
 | |
|  *
 | |
|  * Note that xas_pause() only works for forward iteration.  If a user needs
 | |
|  * to pause a reverse iteration, we will need a xas_pause_rev().
 | |
|  */
 | |
| void xas_pause(struct xa_state *xas)
 | |
| {
 | |
| 	struct xa_node *node = xas->xa_node;
 | |
| 
 | |
| 	if (xas_invalid(xas))
 | |
| 		return;
 | |
| 
 | |
| 	xas->xa_node = XAS_RESTART;
 | |
| 	if (node) {
 | |
| 		unsigned long offset = xas->xa_offset;
 | |
| 		while (++offset < XA_CHUNK_SIZE) {
 | |
| 			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
 | |
| 				break;
 | |
| 		}
 | |
| 		xas->xa_index += (offset - xas->xa_offset) << node->shift;
 | |
| 		if (xas->xa_index == 0)
 | |
| 			xas->xa_node = XAS_BOUNDS;
 | |
| 	} else {
 | |
| 		xas->xa_index++;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_pause);
 | |
| 
 | |
| /*
 | |
|  * __xas_prev() - Find the previous entry in the XArray.
 | |
|  * @xas: XArray operation state.
 | |
|  *
 | |
|  * Helper function for xas_prev() which handles all the complex cases
 | |
|  * out of line.
 | |
|  */
 | |
| void *__xas_prev(struct xa_state *xas)
 | |
| {
 | |
| 	void *entry;
 | |
| 
 | |
| 	if (!xas_frozen(xas->xa_node))
 | |
| 		xas->xa_index--;
 | |
| 	if (!xas->xa_node)
 | |
| 		return set_bounds(xas);
 | |
| 	if (xas_not_node(xas->xa_node))
 | |
| 		return xas_load(xas);
 | |
| 
 | |
| 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
 | |
| 		xas->xa_offset--;
 | |
| 
 | |
| 	while (xas->xa_offset == 255) {
 | |
| 		xas->xa_offset = xas->xa_node->offset - 1;
 | |
| 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
 | |
| 		if (!xas->xa_node)
 | |
| 			return set_bounds(xas);
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
 | |
| 		if (!xa_is_node(entry))
 | |
| 			return entry;
 | |
| 
 | |
| 		xas->xa_node = xa_to_node(entry);
 | |
| 		xas_set_offset(xas);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__xas_prev);
 | |
| 
 | |
| /*
 | |
|  * __xas_next() - Find the next entry in the XArray.
 | |
|  * @xas: XArray operation state.
 | |
|  *
 | |
|  * Helper function for xas_next() which handles all the complex cases
 | |
|  * out of line.
 | |
|  */
 | |
| void *__xas_next(struct xa_state *xas)
 | |
| {
 | |
| 	void *entry;
 | |
| 
 | |
| 	if (!xas_frozen(xas->xa_node))
 | |
| 		xas->xa_index++;
 | |
| 	if (!xas->xa_node)
 | |
| 		return set_bounds(xas);
 | |
| 	if (xas_not_node(xas->xa_node))
 | |
| 		return xas_load(xas);
 | |
| 
 | |
| 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
 | |
| 		xas->xa_offset++;
 | |
| 
 | |
| 	while (xas->xa_offset == XA_CHUNK_SIZE) {
 | |
| 		xas->xa_offset = xas->xa_node->offset + 1;
 | |
| 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
 | |
| 		if (!xas->xa_node)
 | |
| 			return set_bounds(xas);
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
 | |
| 		if (!xa_is_node(entry))
 | |
| 			return entry;
 | |
| 
 | |
| 		xas->xa_node = xa_to_node(entry);
 | |
| 		xas_set_offset(xas);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__xas_next);
 | |
| 
 | |
| /**
 | |
|  * xas_find() - Find the next present entry in the XArray.
 | |
|  * @xas: XArray operation state.
 | |
|  * @max: Highest index to return.
 | |
|  *
 | |
|  * If the @xas has not yet been walked to an entry, return the entry
 | |
|  * which has an index >= xas.xa_index.  If it has been walked, the entry
 | |
|  * currently being pointed at has been processed, and so we move to the
 | |
|  * next entry.
 | |
|  *
 | |
|  * If no entry is found and the array is smaller than @max, the iterator
 | |
|  * is set to the smallest index not yet in the array.  This allows @xas
 | |
|  * to be immediately passed to xas_store().
 | |
|  *
 | |
|  * Return: The entry, if found, otherwise %NULL.
 | |
|  */
 | |
| void *xas_find(struct xa_state *xas, unsigned long max)
 | |
| {
 | |
| 	void *entry;
 | |
| 
 | |
| 	if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
 | |
| 		return NULL;
 | |
| 	if (xas->xa_index > max)
 | |
| 		return set_bounds(xas);
 | |
| 
 | |
| 	if (!xas->xa_node) {
 | |
| 		xas->xa_index = 1;
 | |
| 		return set_bounds(xas);
 | |
| 	} else if (xas->xa_node == XAS_RESTART) {
 | |
| 		entry = xas_load(xas);
 | |
| 		if (entry || xas_not_node(xas->xa_node))
 | |
| 			return entry;
 | |
| 	} else if (!xas->xa_node->shift &&
 | |
| 		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
 | |
| 		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
 | |
| 	}
 | |
| 
 | |
| 	xas_next_offset(xas);
 | |
| 
 | |
| 	while (xas->xa_node && (xas->xa_index <= max)) {
 | |
| 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
 | |
| 			xas->xa_offset = xas->xa_node->offset + 1;
 | |
| 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
 | |
| 		if (xa_is_node(entry)) {
 | |
| 			xas->xa_node = xa_to_node(entry);
 | |
| 			xas->xa_offset = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (entry && !xa_is_sibling(entry))
 | |
| 			return entry;
 | |
| 
 | |
| 		xas_next_offset(xas);
 | |
| 	}
 | |
| 
 | |
| 	if (!xas->xa_node)
 | |
| 		xas->xa_node = XAS_BOUNDS;
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_find);
 | |
| 
 | |
| /**
 | |
|  * xas_find_marked() - Find the next marked entry in the XArray.
 | |
|  * @xas: XArray operation state.
 | |
|  * @max: Highest index to return.
 | |
|  * @mark: Mark number to search for.
 | |
|  *
 | |
|  * If the @xas has not yet been walked to an entry, return the marked entry
 | |
|  * which has an index >= xas.xa_index.  If it has been walked, the entry
 | |
|  * currently being pointed at has been processed, and so we return the
 | |
|  * first marked entry with an index > xas.xa_index.
 | |
|  *
 | |
|  * If no marked entry is found and the array is smaller than @max, @xas is
 | |
|  * set to the bounds state and xas->xa_index is set to the smallest index
 | |
|  * not yet in the array.  This allows @xas to be immediately passed to
 | |
|  * xas_store().
 | |
|  *
 | |
|  * If no entry is found before @max is reached, @xas is set to the restart
 | |
|  * state.
 | |
|  *
 | |
|  * Return: The entry, if found, otherwise %NULL.
 | |
|  */
 | |
| void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
 | |
| {
 | |
| 	bool advance = true;
 | |
| 	unsigned int offset;
 | |
| 	void *entry;
 | |
| 
 | |
| 	if (xas_error(xas))
 | |
| 		return NULL;
 | |
| 	if (xas->xa_index > max)
 | |
| 		goto max;
 | |
| 
 | |
| 	if (!xas->xa_node) {
 | |
| 		xas->xa_index = 1;
 | |
| 		goto out;
 | |
| 	} else if (xas_top(xas->xa_node)) {
 | |
| 		advance = false;
 | |
| 		entry = xa_head(xas->xa);
 | |
| 		xas->xa_node = NULL;
 | |
| 		if (xas->xa_index > max_index(entry))
 | |
| 			goto out;
 | |
| 		if (!xa_is_node(entry)) {
 | |
| 			if (xa_marked(xas->xa, mark))
 | |
| 				return entry;
 | |
| 			xas->xa_index = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		xas->xa_node = xa_to_node(entry);
 | |
| 		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
 | |
| 	}
 | |
| 
 | |
| 	while (xas->xa_index <= max) {
 | |
| 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
 | |
| 			xas->xa_offset = xas->xa_node->offset + 1;
 | |
| 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
 | |
| 			if (!xas->xa_node)
 | |
| 				break;
 | |
| 			advance = false;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!advance) {
 | |
| 			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
 | |
| 			if (xa_is_sibling(entry)) {
 | |
| 				xas->xa_offset = xa_to_sibling(entry);
 | |
| 				xas_move_index(xas, xas->xa_offset);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		offset = xas_find_chunk(xas, advance, mark);
 | |
| 		if (offset > xas->xa_offset) {
 | |
| 			advance = false;
 | |
| 			xas_move_index(xas, offset);
 | |
| 			/* Mind the wrap */
 | |
| 			if ((xas->xa_index - 1) >= max)
 | |
| 				goto max;
 | |
| 			xas->xa_offset = offset;
 | |
| 			if (offset == XA_CHUNK_SIZE)
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
 | |
| 		if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
 | |
| 			continue;
 | |
| 		if (!xa_is_node(entry))
 | |
| 			return entry;
 | |
| 		xas->xa_node = xa_to_node(entry);
 | |
| 		xas_set_offset(xas);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (xas->xa_index > max)
 | |
| 		goto max;
 | |
| 	return set_bounds(xas);
 | |
| max:
 | |
| 	xas->xa_node = XAS_RESTART;
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_find_marked);
 | |
| 
 | |
| /**
 | |
|  * xas_find_conflict() - Find the next present entry in a range.
 | |
|  * @xas: XArray operation state.
 | |
|  *
 | |
|  * The @xas describes both a range and a position within that range.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held.
 | |
|  * Return: The next entry in the range covered by @xas or %NULL.
 | |
|  */
 | |
| void *xas_find_conflict(struct xa_state *xas)
 | |
| {
 | |
| 	void *curr;
 | |
| 
 | |
| 	if (xas_error(xas))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!xas->xa_node)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (xas_top(xas->xa_node)) {
 | |
| 		curr = xas_start(xas);
 | |
| 		if (!curr)
 | |
| 			return NULL;
 | |
| 		while (xa_is_node(curr)) {
 | |
| 			struct xa_node *node = xa_to_node(curr);
 | |
| 			curr = xas_descend(xas, node);
 | |
| 		}
 | |
| 		if (curr)
 | |
| 			return curr;
 | |
| 	}
 | |
| 
 | |
| 	if (xas->xa_node->shift > xas->xa_shift)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (xas->xa_node->shift == xas->xa_shift) {
 | |
| 			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
 | |
| 				break;
 | |
| 		} else if (xas->xa_offset == XA_CHUNK_MASK) {
 | |
| 			xas->xa_offset = xas->xa_node->offset;
 | |
| 			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
 | |
| 			if (!xas->xa_node)
 | |
| 				break;
 | |
| 			continue;
 | |
| 		}
 | |
| 		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
 | |
| 		if (xa_is_sibling(curr))
 | |
| 			continue;
 | |
| 		while (xa_is_node(curr)) {
 | |
| 			xas->xa_node = xa_to_node(curr);
 | |
| 			xas->xa_offset = 0;
 | |
| 			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
 | |
| 		}
 | |
| 		if (curr)
 | |
| 			return curr;
 | |
| 	}
 | |
| 	xas->xa_offset -= xas->xa_sibs;
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xas_find_conflict);
 | |
| 
 | |
| /**
 | |
|  * xa_load() - Load an entry from an XArray.
 | |
|  * @xa: XArray.
 | |
|  * @index: index into array.
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the RCU lock.
 | |
|  * Return: The entry at @index in @xa.
 | |
|  */
 | |
| void *xa_load(struct xarray *xa, unsigned long index)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *entry;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		entry = xas_load(&xas);
 | |
| 		if (xa_is_zero(entry))
 | |
| 			entry = NULL;
 | |
| 	} while (xas_retry(&xas, entry));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| EXPORT_SYMBOL(xa_load);
 | |
| 
 | |
| static void *xas_result(struct xa_state *xas, void *curr)
 | |
| {
 | |
| 	if (xa_is_zero(curr))
 | |
| 		return NULL;
 | |
| 	if (xas_error(xas))
 | |
| 		curr = xas->xa_node;
 | |
| 	return curr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __xa_erase() - Erase this entry from the XArray while locked.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index into array.
 | |
|  *
 | |
|  * After this function returns, loading from @index will return %NULL.
 | |
|  * If the index is part of a multi-index entry, all indices will be erased
 | |
|  * and none of the entries will be part of a multi-index entry.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.
 | |
|  * Return: The entry which used to be at this index.
 | |
|  */
 | |
| void *__xa_erase(struct xarray *xa, unsigned long index)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	return xas_result(&xas, xas_store(&xas, NULL));
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_erase);
 | |
| 
 | |
| /**
 | |
|  * xa_erase() - Erase this entry from the XArray.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index of entry.
 | |
|  *
 | |
|  * After this function returns, loading from @index will return %NULL.
 | |
|  * If the index is part of a multi-index entry, all indices will be erased
 | |
|  * and none of the entries will be part of a multi-index entry.
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the xa_lock.
 | |
|  * Return: The entry which used to be at this index.
 | |
|  */
 | |
| void *xa_erase(struct xarray *xa, unsigned long index)
 | |
| {
 | |
| 	void *entry;
 | |
| 
 | |
| 	xa_lock(xa);
 | |
| 	entry = __xa_erase(xa, index);
 | |
| 	xa_unlock(xa);
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| EXPORT_SYMBOL(xa_erase);
 | |
| 
 | |
| /**
 | |
|  * __xa_store() - Store this entry in the XArray.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index into array.
 | |
|  * @entry: New entry.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * You must already be holding the xa_lock when calling this function.
 | |
|  * It will drop the lock if needed to allocate memory, and then reacquire
 | |
|  * it afterwards.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.  May
 | |
|  * release and reacquire xa_lock if @gfp flags permit.
 | |
|  * Return: The old entry at this index or xa_err() if an error happened.
 | |
|  */
 | |
| void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *curr;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
 | |
| 		return XA_ERROR(-EINVAL);
 | |
| 	if (xa_track_free(xa) && !entry)
 | |
| 		entry = XA_ZERO_ENTRY;
 | |
| 
 | |
| 	do {
 | |
| 		curr = xas_store(&xas, entry);
 | |
| 		if (xa_track_free(xa))
 | |
| 			xas_clear_mark(&xas, XA_FREE_MARK);
 | |
| 	} while (__xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	return xas_result(&xas, curr);
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_store);
 | |
| 
 | |
| /**
 | |
|  * xa_store() - Store this entry in the XArray.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index into array.
 | |
|  * @entry: New entry.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * After this function returns, loads from this index will return @entry.
 | |
|  * Storing into an existing multi-index entry updates the entry of every index.
 | |
|  * The marks associated with @index are unaffected unless @entry is %NULL.
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the xa_lock.
 | |
|  * May sleep if the @gfp flags permit.
 | |
|  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
 | |
|  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
 | |
|  * failed.
 | |
|  */
 | |
| void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
 | |
| {
 | |
| 	void *curr;
 | |
| 
 | |
| 	xa_lock(xa);
 | |
| 	curr = __xa_store(xa, index, entry, gfp);
 | |
| 	xa_unlock(xa);
 | |
| 
 | |
| 	return curr;
 | |
| }
 | |
| EXPORT_SYMBOL(xa_store);
 | |
| 
 | |
| /**
 | |
|  * __xa_cmpxchg() - Store this entry in the XArray.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index into array.
 | |
|  * @old: Old value to test against.
 | |
|  * @entry: New entry.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * You must already be holding the xa_lock when calling this function.
 | |
|  * It will drop the lock if needed to allocate memory, and then reacquire
 | |
|  * it afterwards.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.  May
 | |
|  * release and reacquire xa_lock if @gfp flags permit.
 | |
|  * Return: The old entry at this index or xa_err() if an error happened.
 | |
|  */
 | |
| void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
 | |
| 			void *old, void *entry, gfp_t gfp)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *curr;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
 | |
| 		return XA_ERROR(-EINVAL);
 | |
| 
 | |
| 	do {
 | |
| 		curr = xas_load(&xas);
 | |
| 		if (curr == old) {
 | |
| 			xas_store(&xas, entry);
 | |
| 			if (xa_track_free(xa) && entry && !curr)
 | |
| 				xas_clear_mark(&xas, XA_FREE_MARK);
 | |
| 		}
 | |
| 	} while (__xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	return xas_result(&xas, curr);
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_cmpxchg);
 | |
| 
 | |
| /**
 | |
|  * __xa_insert() - Store this entry in the XArray if no entry is present.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index into array.
 | |
|  * @entry: New entry.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
 | |
|  * if no entry is present.  Inserting will fail if a reserved entry is
 | |
|  * present, even though loading from this index will return NULL.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.  May
 | |
|  * release and reacquire xa_lock if @gfp flags permit.
 | |
|  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
 | |
|  * -ENOMEM if memory could not be allocated.
 | |
|  */
 | |
| int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *curr;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
 | |
| 		return -EINVAL;
 | |
| 	if (!entry)
 | |
| 		entry = XA_ZERO_ENTRY;
 | |
| 
 | |
| 	do {
 | |
| 		curr = xas_load(&xas);
 | |
| 		if (!curr) {
 | |
| 			xas_store(&xas, entry);
 | |
| 			if (xa_track_free(xa))
 | |
| 				xas_clear_mark(&xas, XA_FREE_MARK);
 | |
| 		} else {
 | |
| 			xas_set_err(&xas, -EBUSY);
 | |
| 		}
 | |
| 	} while (__xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	return xas_error(&xas);
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_insert);
 | |
| 
 | |
| #ifdef CONFIG_XARRAY_MULTI
 | |
| static void xas_set_range(struct xa_state *xas, unsigned long first,
 | |
| 		unsigned long last)
 | |
| {
 | |
| 	unsigned int shift = 0;
 | |
| 	unsigned long sibs = last - first;
 | |
| 	unsigned int offset = XA_CHUNK_MASK;
 | |
| 
 | |
| 	xas_set(xas, first);
 | |
| 
 | |
| 	while ((first & XA_CHUNK_MASK) == 0) {
 | |
| 		if (sibs < XA_CHUNK_MASK)
 | |
| 			break;
 | |
| 		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
 | |
| 			break;
 | |
| 		shift += XA_CHUNK_SHIFT;
 | |
| 		if (offset == XA_CHUNK_MASK)
 | |
| 			offset = sibs & XA_CHUNK_MASK;
 | |
| 		sibs >>= XA_CHUNK_SHIFT;
 | |
| 		first >>= XA_CHUNK_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	offset = first & XA_CHUNK_MASK;
 | |
| 	if (offset + sibs > XA_CHUNK_MASK)
 | |
| 		sibs = XA_CHUNK_MASK - offset;
 | |
| 	if ((((first + sibs + 1) << shift) - 1) > last)
 | |
| 		sibs -= 1;
 | |
| 
 | |
| 	xas->xa_shift = shift;
 | |
| 	xas->xa_sibs = sibs;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xa_store_range() - Store this entry at a range of indices in the XArray.
 | |
|  * @xa: XArray.
 | |
|  * @first: First index to affect.
 | |
|  * @last: Last index to affect.
 | |
|  * @entry: New entry.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * After this function returns, loads from any index between @first and @last,
 | |
|  * inclusive will return @entry.
 | |
|  * Storing into an existing multi-index entry updates the entry of every index.
 | |
|  * The marks associated with @index are unaffected unless @entry is %NULL.
 | |
|  *
 | |
|  * Context: Process context.  Takes and releases the xa_lock.  May sleep
 | |
|  * if the @gfp flags permit.
 | |
|  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
 | |
|  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
 | |
|  */
 | |
| void *xa_store_range(struct xarray *xa, unsigned long first,
 | |
| 		unsigned long last, void *entry, gfp_t gfp)
 | |
| {
 | |
| 	XA_STATE(xas, xa, 0);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(xa_is_internal(entry)))
 | |
| 		return XA_ERROR(-EINVAL);
 | |
| 	if (last < first)
 | |
| 		return XA_ERROR(-EINVAL);
 | |
| 
 | |
| 	do {
 | |
| 		xas_lock(&xas);
 | |
| 		if (entry) {
 | |
| 			unsigned int order = BITS_PER_LONG;
 | |
| 			if (last + 1)
 | |
| 				order = __ffs(last + 1);
 | |
| 			xas_set_order(&xas, last, order);
 | |
| 			xas_create(&xas, true);
 | |
| 			if (xas_error(&xas))
 | |
| 				goto unlock;
 | |
| 		}
 | |
| 		do {
 | |
| 			xas_set_range(&xas, first, last);
 | |
| 			xas_store(&xas, entry);
 | |
| 			if (xas_error(&xas))
 | |
| 				goto unlock;
 | |
| 			first += xas_size(&xas);
 | |
| 		} while (first <= last);
 | |
| unlock:
 | |
| 		xas_unlock(&xas);
 | |
| 	} while (xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	return xas_result(&xas, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(xa_store_range);
 | |
| 
 | |
| /**
 | |
|  * xa_get_order() - Get the order of an entry.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index of the entry.
 | |
|  *
 | |
|  * Return: A number between 0 and 63 indicating the order of the entry.
 | |
|  */
 | |
| int xa_get_order(struct xarray *xa, unsigned long index)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *entry;
 | |
| 	int order = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	entry = xas_load(&xas);
 | |
| 
 | |
| 	if (!entry)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (!xas.xa_node)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned int slot = xas.xa_offset + (1 << order);
 | |
| 
 | |
| 		if (slot >= XA_CHUNK_SIZE)
 | |
| 			break;
 | |
| 		if (!xa_is_sibling(xas.xa_node->slots[slot]))
 | |
| 			break;
 | |
| 		order++;
 | |
| 	}
 | |
| 
 | |
| 	order += xas.xa_node->shift;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return order;
 | |
| }
 | |
| EXPORT_SYMBOL(xa_get_order);
 | |
| #endif /* CONFIG_XARRAY_MULTI */
 | |
| 
 | |
| /**
 | |
|  * __xa_alloc() - Find somewhere to store this entry in the XArray.
 | |
|  * @xa: XArray.
 | |
|  * @id: Pointer to ID.
 | |
|  * @limit: Range for allocated ID.
 | |
|  * @entry: New entry.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * Finds an empty entry in @xa between @limit.min and @limit.max,
 | |
|  * stores the index into the @id pointer, then stores the entry at
 | |
|  * that index.  A concurrent lookup will not see an uninitialised @id.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.  May
 | |
|  * release and reacquire xa_lock if @gfp flags permit.
 | |
|  * Return: 0 on success, -ENOMEM if memory could not be allocated or
 | |
|  * -EBUSY if there are no free entries in @limit.
 | |
|  */
 | |
| int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
 | |
| 		struct xa_limit limit, gfp_t gfp)
 | |
| {
 | |
| 	XA_STATE(xas, xa, 0);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
 | |
| 		return -EINVAL;
 | |
| 	if (WARN_ON_ONCE(!xa_track_free(xa)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!entry)
 | |
| 		entry = XA_ZERO_ENTRY;
 | |
| 
 | |
| 	do {
 | |
| 		xas.xa_index = limit.min;
 | |
| 		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
 | |
| 		if (xas.xa_node == XAS_RESTART)
 | |
| 			xas_set_err(&xas, -EBUSY);
 | |
| 		else
 | |
| 			*id = xas.xa_index;
 | |
| 		xas_store(&xas, entry);
 | |
| 		xas_clear_mark(&xas, XA_FREE_MARK);
 | |
| 	} while (__xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	return xas_error(&xas);
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_alloc);
 | |
| 
 | |
| /**
 | |
|  * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
 | |
|  * @xa: XArray.
 | |
|  * @id: Pointer to ID.
 | |
|  * @entry: New entry.
 | |
|  * @limit: Range of allocated ID.
 | |
|  * @next: Pointer to next ID to allocate.
 | |
|  * @gfp: Memory allocation flags.
 | |
|  *
 | |
|  * Finds an empty entry in @xa between @limit.min and @limit.max,
 | |
|  * stores the index into the @id pointer, then stores the entry at
 | |
|  * that index.  A concurrent lookup will not see an uninitialised @id.
 | |
|  * The search for an empty entry will start at @next and will wrap
 | |
|  * around if necessary.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.  May
 | |
|  * release and reacquire xa_lock if @gfp flags permit.
 | |
|  * Return: 0 if the allocation succeeded without wrapping.  1 if the
 | |
|  * allocation succeeded after wrapping, -ENOMEM if memory could not be
 | |
|  * allocated or -EBUSY if there are no free entries in @limit.
 | |
|  */
 | |
| int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
 | |
| 		struct xa_limit limit, u32 *next, gfp_t gfp)
 | |
| {
 | |
| 	u32 min = limit.min;
 | |
| 	int ret;
 | |
| 
 | |
| 	limit.min = max(min, *next);
 | |
| 	ret = __xa_alloc(xa, id, entry, limit, gfp);
 | |
| 	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
 | |
| 		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (ret < 0 && limit.min > min) {
 | |
| 		limit.min = min;
 | |
| 		ret = __xa_alloc(xa, id, entry, limit, gfp);
 | |
| 		if (ret == 0)
 | |
| 			ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (ret >= 0) {
 | |
| 		*next = *id + 1;
 | |
| 		if (*next == 0)
 | |
| 			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_alloc_cyclic);
 | |
| 
 | |
| /**
 | |
|  * __xa_set_mark() - Set this mark on this entry while locked.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index of entry.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * Attempting to set a mark on a %NULL entry does not succeed.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.
 | |
|  */
 | |
| void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *entry = xas_load(&xas);
 | |
| 
 | |
| 	if (entry)
 | |
| 		xas_set_mark(&xas, mark);
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_set_mark);
 | |
| 
 | |
| /**
 | |
|  * __xa_clear_mark() - Clear this mark on this entry while locked.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index of entry.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * Context: Any context.  Expects xa_lock to be held on entry.
 | |
|  */
 | |
| void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *entry = xas_load(&xas);
 | |
| 
 | |
| 	if (entry)
 | |
| 		xas_clear_mark(&xas, mark);
 | |
| }
 | |
| EXPORT_SYMBOL(__xa_clear_mark);
 | |
| 
 | |
| /**
 | |
|  * xa_get_mark() - Inquire whether this mark is set on this entry.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index of entry.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * This function uses the RCU read lock, so the result may be out of date
 | |
|  * by the time it returns.  If you need the result to be stable, use a lock.
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the RCU lock.
 | |
|  * Return: True if the entry at @index has this mark set, false if it doesn't.
 | |
|  */
 | |
| bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	void *entry;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	entry = xas_start(&xas);
 | |
| 	while (xas_get_mark(&xas, mark)) {
 | |
| 		if (!xa_is_node(entry))
 | |
| 			goto found;
 | |
| 		entry = xas_descend(&xas, xa_to_node(entry));
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return false;
 | |
|  found:
 | |
| 	rcu_read_unlock();
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL(xa_get_mark);
 | |
| 
 | |
| /**
 | |
|  * xa_set_mark() - Set this mark on this entry.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index of entry.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * Attempting to set a mark on a %NULL entry does not succeed.
 | |
|  *
 | |
|  * Context: Process context.  Takes and releases the xa_lock.
 | |
|  */
 | |
| void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
 | |
| {
 | |
| 	xa_lock(xa);
 | |
| 	__xa_set_mark(xa, index, mark);
 | |
| 	xa_unlock(xa);
 | |
| }
 | |
| EXPORT_SYMBOL(xa_set_mark);
 | |
| 
 | |
| /**
 | |
|  * xa_clear_mark() - Clear this mark on this entry.
 | |
|  * @xa: XArray.
 | |
|  * @index: Index of entry.
 | |
|  * @mark: Mark number.
 | |
|  *
 | |
|  * Clearing a mark always succeeds.
 | |
|  *
 | |
|  * Context: Process context.  Takes and releases the xa_lock.
 | |
|  */
 | |
| void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
 | |
| {
 | |
| 	xa_lock(xa);
 | |
| 	__xa_clear_mark(xa, index, mark);
 | |
| 	xa_unlock(xa);
 | |
| }
 | |
| EXPORT_SYMBOL(xa_clear_mark);
 | |
| 
 | |
| /**
 | |
|  * xa_find() - Search the XArray for an entry.
 | |
|  * @xa: XArray.
 | |
|  * @indexp: Pointer to an index.
 | |
|  * @max: Maximum index to search to.
 | |
|  * @filter: Selection criterion.
 | |
|  *
 | |
|  * Finds the entry in @xa which matches the @filter, and has the lowest
 | |
|  * index that is at least @indexp and no more than @max.
 | |
|  * If an entry is found, @indexp is updated to be the index of the entry.
 | |
|  * This function is protected by the RCU read lock, so it may not find
 | |
|  * entries which are being simultaneously added.  It will not return an
 | |
|  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the RCU lock.
 | |
|  * Return: The entry, if found, otherwise %NULL.
 | |
|  */
 | |
| void *xa_find(struct xarray *xa, unsigned long *indexp,
 | |
| 			unsigned long max, xa_mark_t filter)
 | |
| {
 | |
| 	XA_STATE(xas, xa, *indexp);
 | |
| 	void *entry;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		if ((__force unsigned int)filter < XA_MAX_MARKS)
 | |
| 			entry = xas_find_marked(&xas, max, filter);
 | |
| 		else
 | |
| 			entry = xas_find(&xas, max);
 | |
| 	} while (xas_retry(&xas, entry));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (entry)
 | |
| 		*indexp = xas.xa_index;
 | |
| 	return entry;
 | |
| }
 | |
| EXPORT_SYMBOL(xa_find);
 | |
| 
 | |
| static bool xas_sibling(struct xa_state *xas)
 | |
| {
 | |
| 	struct xa_node *node = xas->xa_node;
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
 | |
| 		return false;
 | |
| 	mask = (XA_CHUNK_SIZE << node->shift) - 1;
 | |
| 	return (xas->xa_index & mask) >
 | |
| 		((unsigned long)xas->xa_offset << node->shift);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xa_find_after() - Search the XArray for a present entry.
 | |
|  * @xa: XArray.
 | |
|  * @indexp: Pointer to an index.
 | |
|  * @max: Maximum index to search to.
 | |
|  * @filter: Selection criterion.
 | |
|  *
 | |
|  * Finds the entry in @xa which matches the @filter and has the lowest
 | |
|  * index that is above @indexp and no more than @max.
 | |
|  * If an entry is found, @indexp is updated to be the index of the entry.
 | |
|  * This function is protected by the RCU read lock, so it may miss entries
 | |
|  * which are being simultaneously added.  It will not return an
 | |
|  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the RCU lock.
 | |
|  * Return: The pointer, if found, otherwise %NULL.
 | |
|  */
 | |
| void *xa_find_after(struct xarray *xa, unsigned long *indexp,
 | |
| 			unsigned long max, xa_mark_t filter)
 | |
| {
 | |
| 	XA_STATE(xas, xa, *indexp + 1);
 | |
| 	void *entry;
 | |
| 
 | |
| 	if (xas.xa_index == 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		if ((__force unsigned int)filter < XA_MAX_MARKS)
 | |
| 			entry = xas_find_marked(&xas, max, filter);
 | |
| 		else
 | |
| 			entry = xas_find(&xas, max);
 | |
| 
 | |
| 		if (xas_invalid(&xas))
 | |
| 			break;
 | |
| 		if (xas_sibling(&xas))
 | |
| 			continue;
 | |
| 		if (!xas_retry(&xas, entry))
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (entry)
 | |
| 		*indexp = xas.xa_index;
 | |
| 	return entry;
 | |
| }
 | |
| EXPORT_SYMBOL(xa_find_after);
 | |
| 
 | |
| static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
 | |
| 			unsigned long max, unsigned int n)
 | |
| {
 | |
| 	void *entry;
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each(xas, entry, max) {
 | |
| 		if (xas_retry(xas, entry))
 | |
| 			continue;
 | |
| 		dst[i++] = entry;
 | |
| 		if (i == n)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
 | |
| 			unsigned long max, unsigned int n, xa_mark_t mark)
 | |
| {
 | |
| 	void *entry;
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each_marked(xas, entry, max, mark) {
 | |
| 		if (xas_retry(xas, entry))
 | |
| 			continue;
 | |
| 		dst[i++] = entry;
 | |
| 		if (i == n)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xa_extract() - Copy selected entries from the XArray into a normal array.
 | |
|  * @xa: The source XArray to copy from.
 | |
|  * @dst: The buffer to copy entries into.
 | |
|  * @start: The first index in the XArray eligible to be selected.
 | |
|  * @max: The last index in the XArray eligible to be selected.
 | |
|  * @n: The maximum number of entries to copy.
 | |
|  * @filter: Selection criterion.
 | |
|  *
 | |
|  * Copies up to @n entries that match @filter from the XArray.  The
 | |
|  * copied entries will have indices between @start and @max, inclusive.
 | |
|  *
 | |
|  * The @filter may be an XArray mark value, in which case entries which are
 | |
|  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
 | |
|  * which case all entries which are not %NULL will be copied.
 | |
|  *
 | |
|  * The entries returned may not represent a snapshot of the XArray at a
 | |
|  * moment in time.  For example, if another thread stores to index 5, then
 | |
|  * index 10, calling xa_extract() may return the old contents of index 5
 | |
|  * and the new contents of index 10.  Indices not modified while this
 | |
|  * function is running will not be skipped.
 | |
|  *
 | |
|  * If you need stronger guarantees, holding the xa_lock across calls to this
 | |
|  * function will prevent concurrent modification.
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the RCU lock.
 | |
|  * Return: The number of entries copied.
 | |
|  */
 | |
| unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
 | |
| 			unsigned long max, unsigned int n, xa_mark_t filter)
 | |
| {
 | |
| 	XA_STATE(xas, xa, start);
 | |
| 
 | |
| 	if (!n)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((__force unsigned int)filter < XA_MAX_MARKS)
 | |
| 		return xas_extract_marked(&xas, dst, max, n, filter);
 | |
| 	return xas_extract_present(&xas, dst, max, n);
 | |
| }
 | |
| EXPORT_SYMBOL(xa_extract);
 | |
| 
 | |
| /**
 | |
|  * xa_delete_node() - Private interface for workingset code.
 | |
|  * @node: Node to be removed from the tree.
 | |
|  * @update: Function to call to update ancestor nodes.
 | |
|  *
 | |
|  * Context: xa_lock must be held on entry and will not be released.
 | |
|  */
 | |
| void xa_delete_node(struct xa_node *node, xa_update_node_t update)
 | |
| {
 | |
| 	struct xa_state xas = {
 | |
| 		.xa = node->array,
 | |
| 		.xa_index = (unsigned long)node->offset <<
 | |
| 				(node->shift + XA_CHUNK_SHIFT),
 | |
| 		.xa_shift = node->shift + XA_CHUNK_SHIFT,
 | |
| 		.xa_offset = node->offset,
 | |
| 		.xa_node = xa_parent_locked(node->array, node),
 | |
| 		.xa_update = update,
 | |
| 	};
 | |
| 
 | |
| 	xas_store(&xas, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xa_delete_node);	/* For the benefit of the test suite */
 | |
| 
 | |
| /**
 | |
|  * xa_destroy() - Free all internal data structures.
 | |
|  * @xa: XArray.
 | |
|  *
 | |
|  * After calling this function, the XArray is empty and has freed all memory
 | |
|  * allocated for its internal data structures.  You are responsible for
 | |
|  * freeing the objects referenced by the XArray.
 | |
|  *
 | |
|  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
 | |
|  */
 | |
| void xa_destroy(struct xarray *xa)
 | |
| {
 | |
| 	XA_STATE(xas, xa, 0);
 | |
| 	unsigned long flags;
 | |
| 	void *entry;
 | |
| 
 | |
| 	xas.xa_node = NULL;
 | |
| 	xas_lock_irqsave(&xas, flags);
 | |
| 	entry = xa_head_locked(xa);
 | |
| 	RCU_INIT_POINTER(xa->xa_head, NULL);
 | |
| 	xas_init_marks(&xas);
 | |
| 	if (xa_zero_busy(xa))
 | |
| 		xa_mark_clear(xa, XA_FREE_MARK);
 | |
| 	/* lockdep checks we're still holding the lock in xas_free_nodes() */
 | |
| 	if (xa_is_node(entry))
 | |
| 		xas_free_nodes(&xas, xa_to_node(entry));
 | |
| 	xas_unlock_irqrestore(&xas, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(xa_destroy);
 | |
| 
 | |
| #ifdef XA_DEBUG
 | |
| void xa_dump_node(const struct xa_node *node)
 | |
| {
 | |
| 	unsigned i, j;
 | |
| 
 | |
| 	if (!node)
 | |
| 		return;
 | |
| 	if ((unsigned long)node & 3) {
 | |
| 		pr_cont("node %px\n", node);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
 | |
| 		"array %px list %px %px marks",
 | |
| 		node, node->parent ? "offset" : "max", node->offset,
 | |
| 		node->parent, node->shift, node->count, node->nr_values,
 | |
| 		node->array, node->private_list.prev, node->private_list.next);
 | |
| 	for (i = 0; i < XA_MAX_MARKS; i++)
 | |
| 		for (j = 0; j < XA_MARK_LONGS; j++)
 | |
| 			pr_cont(" %lx", node->marks[i][j]);
 | |
| 	pr_cont("\n");
 | |
| }
 | |
| 
 | |
| void xa_dump_index(unsigned long index, unsigned int shift)
 | |
| {
 | |
| 	if (!shift)
 | |
| 		pr_info("%lu: ", index);
 | |
| 	else if (shift >= BITS_PER_LONG)
 | |
| 		pr_info("0-%lu: ", ~0UL);
 | |
| 	else
 | |
| 		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
 | |
| }
 | |
| 
 | |
| void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
 | |
| {
 | |
| 	if (!entry)
 | |
| 		return;
 | |
| 
 | |
| 	xa_dump_index(index, shift);
 | |
| 
 | |
| 	if (xa_is_node(entry)) {
 | |
| 		if (shift == 0) {
 | |
| 			pr_cont("%px\n", entry);
 | |
| 		} else {
 | |
| 			unsigned long i;
 | |
| 			struct xa_node *node = xa_to_node(entry);
 | |
| 			xa_dump_node(node);
 | |
| 			for (i = 0; i < XA_CHUNK_SIZE; i++)
 | |
| 				xa_dump_entry(node->slots[i],
 | |
| 				      index + (i << node->shift), node->shift);
 | |
| 		}
 | |
| 	} else if (xa_is_value(entry))
 | |
| 		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
 | |
| 						xa_to_value(entry), entry);
 | |
| 	else if (!xa_is_internal(entry))
 | |
| 		pr_cont("%px\n", entry);
 | |
| 	else if (xa_is_retry(entry))
 | |
| 		pr_cont("retry (%ld)\n", xa_to_internal(entry));
 | |
| 	else if (xa_is_sibling(entry))
 | |
| 		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
 | |
| 	else if (xa_is_zero(entry))
 | |
| 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
 | |
| 	else
 | |
| 		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
 | |
| }
 | |
| 
 | |
| void xa_dump(const struct xarray *xa)
 | |
| {
 | |
| 	void *entry = xa->xa_head;
 | |
| 	unsigned int shift = 0;
 | |
| 
 | |
| 	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
 | |
| 			xa->xa_flags, xa_marked(xa, XA_MARK_0),
 | |
| 			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
 | |
| 	if (xa_is_node(entry))
 | |
| 		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
 | |
| 	xa_dump_entry(entry, 0, shift);
 | |
| }
 | |
| #endif
 |