410 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			410 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Test cases for SL[AOU]B/page initialization at alloc/free time.
 | |
|  */
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #define GARBAGE_INT (0x09A7BA9E)
 | |
| #define GARBAGE_BYTE (0x9E)
 | |
| 
 | |
| #define REPORT_FAILURES_IN_FN() \
 | |
| 	do {	\
 | |
| 		if (failures)	\
 | |
| 			pr_info("%s failed %d out of %d times\n",	\
 | |
| 				__func__, failures, num_tests);		\
 | |
| 		else		\
 | |
| 			pr_info("all %d tests in %s passed\n",		\
 | |
| 				num_tests, __func__);			\
 | |
| 	} while (0)
 | |
| 
 | |
| /* Calculate the number of uninitialized bytes in the buffer. */
 | |
| static int __init count_nonzero_bytes(void *ptr, size_t size)
 | |
| {
 | |
| 	int i, ret = 0;
 | |
| 	unsigned char *p = (unsigned char *)ptr;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		if (p[i])
 | |
| 			ret++;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Fill a buffer with garbage, skipping |skip| first bytes. */
 | |
| static void __init fill_with_garbage_skip(void *ptr, int size, size_t skip)
 | |
| {
 | |
| 	unsigned int *p = (unsigned int *)((char *)ptr + skip);
 | |
| 	int i = 0;
 | |
| 
 | |
| 	WARN_ON(skip > size);
 | |
| 	size -= skip;
 | |
| 
 | |
| 	while (size >= sizeof(*p)) {
 | |
| 		p[i] = GARBAGE_INT;
 | |
| 		i++;
 | |
| 		size -= sizeof(*p);
 | |
| 	}
 | |
| 	if (size)
 | |
| 		memset(&p[i], GARBAGE_BYTE, size);
 | |
| }
 | |
| 
 | |
| static void __init fill_with_garbage(void *ptr, size_t size)
 | |
| {
 | |
| 	fill_with_garbage_skip(ptr, size, 0);
 | |
| }
 | |
| 
 | |
| static int __init do_alloc_pages_order(int order, int *total_failures)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *buf;
 | |
| 	size_t size = PAGE_SIZE << order;
 | |
| 
 | |
| 	page = alloc_pages(GFP_KERNEL, order);
 | |
| 	buf = page_address(page);
 | |
| 	fill_with_garbage(buf, size);
 | |
| 	__free_pages(page, order);
 | |
| 
 | |
| 	page = alloc_pages(GFP_KERNEL, order);
 | |
| 	buf = page_address(page);
 | |
| 	if (count_nonzero_bytes(buf, size))
 | |
| 		(*total_failures)++;
 | |
| 	fill_with_garbage(buf, size);
 | |
| 	__free_pages(page, order);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Test the page allocator by calling alloc_pages with different orders. */
 | |
| static int __init test_pages(int *total_failures)
 | |
| {
 | |
| 	int failures = 0, num_tests = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NR_PAGE_ORDERS; i++)
 | |
| 		num_tests += do_alloc_pages_order(i, &failures);
 | |
| 
 | |
| 	REPORT_FAILURES_IN_FN();
 | |
| 	*total_failures += failures;
 | |
| 	return num_tests;
 | |
| }
 | |
| 
 | |
| /* Test kmalloc() with given parameters. */
 | |
| static int __init do_kmalloc_size(size_t size, int *total_failures)
 | |
| {
 | |
| 	void *buf;
 | |
| 
 | |
| 	buf = kmalloc(size, GFP_KERNEL);
 | |
| 	fill_with_garbage(buf, size);
 | |
| 	kfree(buf);
 | |
| 
 | |
| 	buf = kmalloc(size, GFP_KERNEL);
 | |
| 	if (count_nonzero_bytes(buf, size))
 | |
| 		(*total_failures)++;
 | |
| 	fill_with_garbage(buf, size);
 | |
| 	kfree(buf);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Test vmalloc() with given parameters. */
 | |
| static int __init do_vmalloc_size(size_t size, int *total_failures)
 | |
| {
 | |
| 	void *buf;
 | |
| 
 | |
| 	buf = vmalloc(size);
 | |
| 	fill_with_garbage(buf, size);
 | |
| 	vfree(buf);
 | |
| 
 | |
| 	buf = vmalloc(size);
 | |
| 	if (count_nonzero_bytes(buf, size))
 | |
| 		(*total_failures)++;
 | |
| 	fill_with_garbage(buf, size);
 | |
| 	vfree(buf);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Test kmalloc()/vmalloc() by allocating objects of different sizes. */
 | |
| static int __init test_kvmalloc(int *total_failures)
 | |
| {
 | |
| 	int failures = 0, num_tests = 0;
 | |
| 	int i, size;
 | |
| 
 | |
| 	for (i = 0; i < 20; i++) {
 | |
| 		size = 1 << i;
 | |
| 		num_tests += do_kmalloc_size(size, &failures);
 | |
| 		num_tests += do_vmalloc_size(size, &failures);
 | |
| 	}
 | |
| 
 | |
| 	REPORT_FAILURES_IN_FN();
 | |
| 	*total_failures += failures;
 | |
| 	return num_tests;
 | |
| }
 | |
| 
 | |
| #define CTOR_BYTES (sizeof(unsigned int))
 | |
| #define CTOR_PATTERN (0x41414141)
 | |
| /* Initialize the first 4 bytes of the object. */
 | |
| static void test_ctor(void *obj)
 | |
| {
 | |
| 	*(unsigned int *)obj = CTOR_PATTERN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the invariants for the buffer allocated from a slab cache.
 | |
|  * If the cache has a test constructor, the first 4 bytes of the object must
 | |
|  * always remain equal to CTOR_PATTERN.
 | |
|  * If the cache isn't an RCU-typesafe one, or if the allocation is done with
 | |
|  * __GFP_ZERO, then the object contents must be zeroed after allocation.
 | |
|  * If the cache is an RCU-typesafe one, the object contents must never be
 | |
|  * zeroed after the first use. This is checked by memcmp() in
 | |
|  * do_kmem_cache_size().
 | |
|  */
 | |
| static bool __init check_buf(void *buf, int size, bool want_ctor,
 | |
| 			     bool want_rcu, bool want_zero)
 | |
| {
 | |
| 	int bytes;
 | |
| 	bool fail = false;
 | |
| 
 | |
| 	bytes = count_nonzero_bytes(buf, size);
 | |
| 	WARN_ON(want_ctor && want_zero);
 | |
| 	if (want_zero)
 | |
| 		return bytes;
 | |
| 	if (want_ctor) {
 | |
| 		if (*(unsigned int *)buf != CTOR_PATTERN)
 | |
| 			fail = 1;
 | |
| 	} else {
 | |
| 		if (bytes)
 | |
| 			fail = !want_rcu;
 | |
| 	}
 | |
| 	return fail;
 | |
| }
 | |
| 
 | |
| #define BULK_SIZE 100
 | |
| static void *bulk_array[BULK_SIZE];
 | |
| 
 | |
| /*
 | |
|  * Test kmem_cache with given parameters:
 | |
|  *  want_ctor - use a constructor;
 | |
|  *  want_rcu - use SLAB_TYPESAFE_BY_RCU;
 | |
|  *  want_zero - use __GFP_ZERO.
 | |
|  */
 | |
| static int __init do_kmem_cache_size(size_t size, bool want_ctor,
 | |
| 				     bool want_rcu, bool want_zero,
 | |
| 				     int *total_failures)
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 	int iter;
 | |
| 	bool fail = false;
 | |
| 	gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0);
 | |
| 	void *buf, *buf_copy;
 | |
| 
 | |
| 	c = kmem_cache_create("test_cache", size, 1,
 | |
| 			      want_rcu ? SLAB_TYPESAFE_BY_RCU : 0,
 | |
| 			      want_ctor ? test_ctor : NULL);
 | |
| 	for (iter = 0; iter < 10; iter++) {
 | |
| 		/* Do a test of bulk allocations */
 | |
| 		if (!want_rcu && !want_ctor) {
 | |
| 			int ret;
 | |
| 
 | |
| 			ret = kmem_cache_alloc_bulk(c, alloc_mask, BULK_SIZE, bulk_array);
 | |
| 			if (!ret) {
 | |
| 				fail = true;
 | |
| 			} else {
 | |
| 				int i;
 | |
| 				for (i = 0; i < ret; i++)
 | |
| 					fail |= check_buf(bulk_array[i], size, want_ctor, want_rcu, want_zero);
 | |
| 				kmem_cache_free_bulk(c, ret, bulk_array);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		buf = kmem_cache_alloc(c, alloc_mask);
 | |
| 		/* Check that buf is zeroed, if it must be. */
 | |
| 		fail |= check_buf(buf, size, want_ctor, want_rcu, want_zero);
 | |
| 		fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0);
 | |
| 
 | |
| 		if (!want_rcu) {
 | |
| 			kmem_cache_free(c, buf);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If this is an RCU cache, use a critical section to ensure we
 | |
| 		 * can touch objects after they're freed.
 | |
| 		 */
 | |
| 		rcu_read_lock();
 | |
| 		/*
 | |
| 		 * Copy the buffer to check that it's not wiped on
 | |
| 		 * free().
 | |
| 		 */
 | |
| 		buf_copy = kmalloc(size, GFP_ATOMIC);
 | |
| 		if (buf_copy)
 | |
| 			memcpy(buf_copy, buf, size);
 | |
| 
 | |
| 		kmem_cache_free(c, buf);
 | |
| 		/*
 | |
| 		 * Check that |buf| is intact after kmem_cache_free().
 | |
| 		 * |want_zero| is false, because we wrote garbage to
 | |
| 		 * the buffer already.
 | |
| 		 */
 | |
| 		fail |= check_buf(buf, size, want_ctor, want_rcu,
 | |
| 				  false);
 | |
| 		if (buf_copy) {
 | |
| 			fail |= (bool)memcmp(buf, buf_copy, size);
 | |
| 			kfree(buf_copy);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	kmem_cache_destroy(c);
 | |
| 
 | |
| 	*total_failures += fail;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the data written to an RCU-allocated object survives
 | |
|  * reallocation.
 | |
|  */
 | |
| static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures)
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 	void *buf, *buf_contents, *saved_ptr;
 | |
| 	void **used_objects;
 | |
| 	int i, iter, maxiter = 1024;
 | |
| 	bool fail = false;
 | |
| 
 | |
| 	c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU,
 | |
| 			      NULL);
 | |
| 	buf = kmem_cache_alloc(c, GFP_KERNEL);
 | |
| 	saved_ptr = buf;
 | |
| 	fill_with_garbage(buf, size);
 | |
| 	buf_contents = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!buf_contents)
 | |
| 		goto out;
 | |
| 	used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL);
 | |
| 	if (!used_objects) {
 | |
| 		kfree(buf_contents);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	memcpy(buf_contents, buf, size);
 | |
| 	kmem_cache_free(c, buf);
 | |
| 	/*
 | |
| 	 * Run for a fixed number of iterations. If we never hit saved_ptr,
 | |
| 	 * assume the test passes.
 | |
| 	 */
 | |
| 	for (iter = 0; iter < maxiter; iter++) {
 | |
| 		buf = kmem_cache_alloc(c, GFP_KERNEL);
 | |
| 		used_objects[iter] = buf;
 | |
| 		if (buf == saved_ptr) {
 | |
| 			fail = memcmp(buf_contents, buf, size);
 | |
| 			for (i = 0; i <= iter; i++)
 | |
| 				kmem_cache_free(c, used_objects[i]);
 | |
| 			goto free_out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| free_out:
 | |
| 	kmem_cache_destroy(c);
 | |
| 	kfree(buf_contents);
 | |
| 	kfree(used_objects);
 | |
| out:
 | |
| 	*total_failures += fail;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init do_kmem_cache_size_bulk(int size, int *total_failures)
 | |
| {
 | |
| 	struct kmem_cache *c;
 | |
| 	int i, iter, maxiter = 1024;
 | |
| 	int num, bytes;
 | |
| 	bool fail = false;
 | |
| 	void *objects[10];
 | |
| 
 | |
| 	c = kmem_cache_create("test_cache", size, size, 0, NULL);
 | |
| 	for (iter = 0; (iter < maxiter) && !fail; iter++) {
 | |
| 		num = kmem_cache_alloc_bulk(c, GFP_KERNEL, ARRAY_SIZE(objects),
 | |
| 					    objects);
 | |
| 		for (i = 0; i < num; i++) {
 | |
| 			bytes = count_nonzero_bytes(objects[i], size);
 | |
| 			if (bytes)
 | |
| 				fail = true;
 | |
| 			fill_with_garbage(objects[i], size);
 | |
| 		}
 | |
| 
 | |
| 		if (num)
 | |
| 			kmem_cache_free_bulk(c, num, objects);
 | |
| 	}
 | |
| 	*total_failures += fail;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test kmem_cache allocation by creating caches of different sizes, with and
 | |
|  * without constructors, with and without SLAB_TYPESAFE_BY_RCU.
 | |
|  */
 | |
| static int __init test_kmemcache(int *total_failures)
 | |
| {
 | |
| 	int failures = 0, num_tests = 0;
 | |
| 	int i, flags, size;
 | |
| 	bool ctor, rcu, zero;
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		size = 8 << i;
 | |
| 		for (flags = 0; flags < 8; flags++) {
 | |
| 			ctor = flags & 1;
 | |
| 			rcu = flags & 2;
 | |
| 			zero = flags & 4;
 | |
| 			if (ctor & zero)
 | |
| 				continue;
 | |
| 			num_tests += do_kmem_cache_size(size, ctor, rcu, zero,
 | |
| 							&failures);
 | |
| 		}
 | |
| 		num_tests += do_kmem_cache_size_bulk(size, &failures);
 | |
| 	}
 | |
| 	REPORT_FAILURES_IN_FN();
 | |
| 	*total_failures += failures;
 | |
| 	return num_tests;
 | |
| }
 | |
| 
 | |
| /* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */
 | |
| static int __init test_rcu_persistent(int *total_failures)
 | |
| {
 | |
| 	int failures = 0, num_tests = 0;
 | |
| 	int i, size;
 | |
| 
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		size = 8 << i;
 | |
| 		num_tests += do_kmem_cache_rcu_persistent(size, &failures);
 | |
| 	}
 | |
| 	REPORT_FAILURES_IN_FN();
 | |
| 	*total_failures += failures;
 | |
| 	return num_tests;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run the tests. Each test function returns the number of executed tests and
 | |
|  * updates |failures| with the number of failed tests.
 | |
|  */
 | |
| static int __init test_meminit_init(void)
 | |
| {
 | |
| 	int failures = 0, num_tests = 0;
 | |
| 
 | |
| 	num_tests += test_pages(&failures);
 | |
| 	num_tests += test_kvmalloc(&failures);
 | |
| 	num_tests += test_kmemcache(&failures);
 | |
| 	num_tests += test_rcu_persistent(&failures);
 | |
| 
 | |
| 	if (failures == 0)
 | |
| 		pr_info("all %d tests passed!\n", num_tests);
 | |
| 	else
 | |
| 		pr_info("failures: %d out of %d\n", failures, num_tests);
 | |
| 
 | |
| 	return failures ? -EINVAL : 0;
 | |
| }
 | |
| module_init(test_meminit_init);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 |