2238 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2238 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include <crypto/hash.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/bvec.h>
 | |
| #include <linux/fault-inject-usercopy.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/splice.h>
 | |
| #include <linux/compat.h>
 | |
| #include <net/checksum.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/instrumented.h>
 | |
| 
 | |
| #define PIPE_PARANOIA /* for now */
 | |
| 
 | |
| /* covers ubuf and kbuf alike */
 | |
| #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
 | |
| 	size_t __maybe_unused off = 0;				\
 | |
| 	len = n;						\
 | |
| 	base = __p + i->iov_offset;				\
 | |
| 	len -= (STEP);						\
 | |
| 	i->iov_offset += len;					\
 | |
| 	n = len;						\
 | |
| }
 | |
| 
 | |
| /* covers iovec and kvec alike */
 | |
| #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
 | |
| 	size_t off = 0;						\
 | |
| 	size_t skip = i->iov_offset;				\
 | |
| 	do {							\
 | |
| 		len = min(n, __p->iov_len - skip);		\
 | |
| 		if (likely(len)) {				\
 | |
| 			base = __p->iov_base + skip;		\
 | |
| 			len -= (STEP);				\
 | |
| 			off += len;				\
 | |
| 			skip += len;				\
 | |
| 			n -= len;				\
 | |
| 			if (skip < __p->iov_len)		\
 | |
| 				break;				\
 | |
| 		}						\
 | |
| 		__p++;						\
 | |
| 		skip = 0;					\
 | |
| 	} while (n);						\
 | |
| 	i->iov_offset = skip;					\
 | |
| 	n = off;						\
 | |
| }
 | |
| 
 | |
| #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
 | |
| 	size_t off = 0;						\
 | |
| 	unsigned skip = i->iov_offset;				\
 | |
| 	while (n) {						\
 | |
| 		unsigned offset = p->bv_offset + skip;		\
 | |
| 		unsigned left;					\
 | |
| 		void *kaddr = kmap_local_page(p->bv_page +	\
 | |
| 					offset / PAGE_SIZE);	\
 | |
| 		base = kaddr + offset % PAGE_SIZE;		\
 | |
| 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
 | |
| 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
 | |
| 		left = (STEP);					\
 | |
| 		kunmap_local(kaddr);				\
 | |
| 		len -= left;					\
 | |
| 		off += len;					\
 | |
| 		skip += len;					\
 | |
| 		if (skip == p->bv_len) {			\
 | |
| 			skip = 0;				\
 | |
| 			p++;					\
 | |
| 		}						\
 | |
| 		n -= len;					\
 | |
| 		if (left)					\
 | |
| 			break;					\
 | |
| 	}							\
 | |
| 	i->iov_offset = skip;					\
 | |
| 	n = off;						\
 | |
| }
 | |
| 
 | |
| #define iterate_xarray(i, n, base, len, __off, STEP) {		\
 | |
| 	__label__ __out;					\
 | |
| 	size_t __off = 0;					\
 | |
| 	struct folio *folio;					\
 | |
| 	loff_t start = i->xarray_start + i->iov_offset;		\
 | |
| 	pgoff_t index = start / PAGE_SIZE;			\
 | |
| 	XA_STATE(xas, i->xarray, index);			\
 | |
| 								\
 | |
| 	len = PAGE_SIZE - offset_in_page(start);		\
 | |
| 	rcu_read_lock();					\
 | |
| 	xas_for_each(&xas, folio, ULONG_MAX) {			\
 | |
| 		unsigned left;					\
 | |
| 		size_t offset;					\
 | |
| 		if (xas_retry(&xas, folio))			\
 | |
| 			continue;				\
 | |
| 		if (WARN_ON(xa_is_value(folio)))		\
 | |
| 			break;					\
 | |
| 		if (WARN_ON(folio_test_hugetlb(folio)))		\
 | |
| 			break;					\
 | |
| 		offset = offset_in_folio(folio, start + __off);	\
 | |
| 		while (offset < folio_size(folio)) {		\
 | |
| 			base = kmap_local_folio(folio, offset);	\
 | |
| 			len = min(n, len);			\
 | |
| 			left = (STEP);				\
 | |
| 			kunmap_local(base);			\
 | |
| 			len -= left;				\
 | |
| 			__off += len;				\
 | |
| 			n -= len;				\
 | |
| 			if (left || n == 0)			\
 | |
| 				goto __out;			\
 | |
| 			offset += len;				\
 | |
| 			len = PAGE_SIZE;			\
 | |
| 		}						\
 | |
| 	}							\
 | |
| __out:								\
 | |
| 	rcu_read_unlock();					\
 | |
| 	i->iov_offset += __off;					\
 | |
| 	n = __off;						\
 | |
| }
 | |
| 
 | |
| #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
 | |
| 	if (unlikely(i->count < n))				\
 | |
| 		n = i->count;					\
 | |
| 	if (likely(n)) {					\
 | |
| 		if (likely(iter_is_ubuf(i))) {			\
 | |
| 			void __user *base;			\
 | |
| 			size_t len;				\
 | |
| 			iterate_buf(i, n, base, len, off,	\
 | |
| 						i->ubuf, (I)) 	\
 | |
| 		} else if (likely(iter_is_iovec(i))) {		\
 | |
| 			const struct iovec *iov = iter_iov(i);	\
 | |
| 			void __user *base;			\
 | |
| 			size_t len;				\
 | |
| 			iterate_iovec(i, n, base, len, off,	\
 | |
| 						iov, (I))	\
 | |
| 			i->nr_segs -= iov - iter_iov(i);	\
 | |
| 			i->__iov = iov;				\
 | |
| 		} else if (iov_iter_is_bvec(i)) {		\
 | |
| 			const struct bio_vec *bvec = i->bvec;	\
 | |
| 			void *base;				\
 | |
| 			size_t len;				\
 | |
| 			iterate_bvec(i, n, base, len, off,	\
 | |
| 						bvec, (K))	\
 | |
| 			i->nr_segs -= bvec - i->bvec;		\
 | |
| 			i->bvec = bvec;				\
 | |
| 		} else if (iov_iter_is_kvec(i)) {		\
 | |
| 			const struct kvec *kvec = i->kvec;	\
 | |
| 			void *base;				\
 | |
| 			size_t len;				\
 | |
| 			iterate_iovec(i, n, base, len, off,	\
 | |
| 						kvec, (K))	\
 | |
| 			i->nr_segs -= kvec - i->kvec;		\
 | |
| 			i->kvec = kvec;				\
 | |
| 		} else if (iov_iter_is_xarray(i)) {		\
 | |
| 			void *base;				\
 | |
| 			size_t len;				\
 | |
| 			iterate_xarray(i, n, base, len, off,	\
 | |
| 							(K))	\
 | |
| 		}						\
 | |
| 		i->count -= n;					\
 | |
| 	}							\
 | |
| }
 | |
| #define iterate_and_advance(i, n, base, len, off, I, K) \
 | |
| 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
 | |
| 
 | |
| static int copyout(void __user *to, const void *from, size_t n)
 | |
| {
 | |
| 	if (should_fail_usercopy())
 | |
| 		return n;
 | |
| 	if (access_ok(to, n)) {
 | |
| 		instrument_copy_to_user(to, from, n);
 | |
| 		n = raw_copy_to_user(to, from, n);
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static int copyout_nofault(void __user *to, const void *from, size_t n)
 | |
| {
 | |
| 	long res;
 | |
| 
 | |
| 	if (should_fail_usercopy())
 | |
| 		return n;
 | |
| 
 | |
| 	res = copy_to_user_nofault(to, from, n);
 | |
| 
 | |
| 	return res < 0 ? n : res;
 | |
| }
 | |
| 
 | |
| static int copyin(void *to, const void __user *from, size_t n)
 | |
| {
 | |
| 	size_t res = n;
 | |
| 
 | |
| 	if (should_fail_usercopy())
 | |
| 		return n;
 | |
| 	if (access_ok(from, n)) {
 | |
| 		instrument_copy_from_user_before(to, from, n);
 | |
| 		res = raw_copy_from_user(to, from, n);
 | |
| 		instrument_copy_from_user_after(to, from, n, res);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| #ifdef PIPE_PARANOIA
 | |
| static bool sanity(const struct iov_iter *i)
 | |
| {
 | |
| 	struct pipe_inode_info *pipe = i->pipe;
 | |
| 	unsigned int p_head = pipe->head;
 | |
| 	unsigned int p_tail = pipe->tail;
 | |
| 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
 | |
| 	unsigned int i_head = i->head;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	if (i->last_offset) {
 | |
| 		struct pipe_buffer *p;
 | |
| 		if (unlikely(p_occupancy == 0))
 | |
| 			goto Bad;	// pipe must be non-empty
 | |
| 		if (unlikely(i_head != p_head - 1))
 | |
| 			goto Bad;	// must be at the last buffer...
 | |
| 
 | |
| 		p = pipe_buf(pipe, i_head);
 | |
| 		if (unlikely(p->offset + p->len != abs(i->last_offset)))
 | |
| 			goto Bad;	// ... at the end of segment
 | |
| 	} else {
 | |
| 		if (i_head != p_head)
 | |
| 			goto Bad;	// must be right after the last buffer
 | |
| 	}
 | |
| 	return true;
 | |
| Bad:
 | |
| 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
 | |
| 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
 | |
| 			p_head, p_tail, pipe->ring_size);
 | |
| 	for (idx = 0; idx < pipe->ring_size; idx++)
 | |
| 		printk(KERN_ERR "[%p %p %d %d]\n",
 | |
| 			pipe->bufs[idx].ops,
 | |
| 			pipe->bufs[idx].page,
 | |
| 			pipe->bufs[idx].offset,
 | |
| 			pipe->bufs[idx].len);
 | |
| 	WARN_ON(1);
 | |
| 	return false;
 | |
| }
 | |
| #else
 | |
| #define sanity(i) true
 | |
| #endif
 | |
| 
 | |
| static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
 | |
| {
 | |
| 	struct page *page = alloc_page(GFP_USER);
 | |
| 	if (page) {
 | |
| 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
 | |
| 		*buf = (struct pipe_buffer) {
 | |
| 			.ops = &default_pipe_buf_ops,
 | |
| 			.page = page,
 | |
| 			.offset = 0,
 | |
| 			.len = size
 | |
| 		};
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void push_page(struct pipe_inode_info *pipe, struct page *page,
 | |
| 			unsigned int offset, unsigned int size)
 | |
| {
 | |
| 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
 | |
| 	*buf = (struct pipe_buffer) {
 | |
| 		.ops = &page_cache_pipe_buf_ops,
 | |
| 		.page = page,
 | |
| 		.offset = offset,
 | |
| 		.len = size
 | |
| 	};
 | |
| 	get_page(page);
 | |
| }
 | |
| 
 | |
| static inline int last_offset(const struct pipe_buffer *buf)
 | |
| {
 | |
| 	if (buf->ops == &default_pipe_buf_ops)
 | |
| 		return buf->len;	// buf->offset is 0 for those
 | |
| 	else
 | |
| 		return -(buf->offset + buf->len);
 | |
| }
 | |
| 
 | |
| static struct page *append_pipe(struct iov_iter *i, size_t size,
 | |
| 				unsigned int *off)
 | |
| {
 | |
| 	struct pipe_inode_info *pipe = i->pipe;
 | |
| 	int offset = i->last_offset;
 | |
| 	struct pipe_buffer *buf;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (offset > 0 && offset < PAGE_SIZE) {
 | |
| 		// some space in the last buffer; add to it
 | |
| 		buf = pipe_buf(pipe, pipe->head - 1);
 | |
| 		size = min_t(size_t, size, PAGE_SIZE - offset);
 | |
| 		buf->len += size;
 | |
| 		i->last_offset += size;
 | |
| 		i->count -= size;
 | |
| 		*off = offset;
 | |
| 		return buf->page;
 | |
| 	}
 | |
| 	// OK, we need a new buffer
 | |
| 	*off = 0;
 | |
| 	size = min_t(size_t, size, PAGE_SIZE);
 | |
| 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 | |
| 		return NULL;
 | |
| 	page = push_anon(pipe, size);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 	i->head = pipe->head - 1;
 | |
| 	i->last_offset = size;
 | |
| 	i->count -= size;
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
 | |
| 			 struct iov_iter *i)
 | |
| {
 | |
| 	struct pipe_inode_info *pipe = i->pipe;
 | |
| 	unsigned int head = pipe->head;
 | |
| 
 | |
| 	if (unlikely(bytes > i->count))
 | |
| 		bytes = i->count;
 | |
| 
 | |
| 	if (unlikely(!bytes))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sanity(i))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (offset && i->last_offset == -offset) { // could we merge it?
 | |
| 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
 | |
| 		if (buf->page == page) {
 | |
| 			buf->len += bytes;
 | |
| 			i->last_offset -= bytes;
 | |
| 			i->count -= bytes;
 | |
| 			return bytes;
 | |
| 		}
 | |
| 	}
 | |
| 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 | |
| 		return 0;
 | |
| 
 | |
| 	push_page(pipe, page, offset, bytes);
 | |
| 	i->last_offset = -(offset + bytes);
 | |
| 	i->head = head;
 | |
| 	i->count -= bytes;
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fault_in_iov_iter_readable - fault in iov iterator for reading
 | |
|  * @i: iterator
 | |
|  * @size: maximum length
 | |
|  *
 | |
|  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
 | |
|  * @size.  For each iovec, fault in each page that constitutes the iovec.
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in (like copy_to_user() and
 | |
|  * copy_from_user()).
 | |
|  *
 | |
|  * Always returns 0 for non-userspace iterators.
 | |
|  */
 | |
| size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	if (iter_is_ubuf(i)) {
 | |
| 		size_t n = min(size, iov_iter_count(i));
 | |
| 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
 | |
| 		return size - n;
 | |
| 	} else if (iter_is_iovec(i)) {
 | |
| 		size_t count = min(size, iov_iter_count(i));
 | |
| 		const struct iovec *p;
 | |
| 		size_t skip;
 | |
| 
 | |
| 		size -= count;
 | |
| 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 | |
| 			size_t len = min(count, p->iov_len - skip);
 | |
| 			size_t ret;
 | |
| 
 | |
| 			if (unlikely(!len))
 | |
| 				continue;
 | |
| 			ret = fault_in_readable(p->iov_base + skip, len);
 | |
| 			count -= len - ret;
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		return count + size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_iov_iter_readable);
 | |
| 
 | |
| /*
 | |
|  * fault_in_iov_iter_writeable - fault in iov iterator for writing
 | |
|  * @i: iterator
 | |
|  * @size: maximum length
 | |
|  *
 | |
|  * Faults in the iterator using get_user_pages(), i.e., without triggering
 | |
|  * hardware page faults.  This is primarily useful when we already know that
 | |
|  * some or all of the pages in @i aren't in memory.
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in, like copy_to_user() and
 | |
|  * copy_from_user().
 | |
|  *
 | |
|  * Always returns 0 for non-user-space iterators.
 | |
|  */
 | |
| size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	if (iter_is_ubuf(i)) {
 | |
| 		size_t n = min(size, iov_iter_count(i));
 | |
| 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
 | |
| 		return size - n;
 | |
| 	} else if (iter_is_iovec(i)) {
 | |
| 		size_t count = min(size, iov_iter_count(i));
 | |
| 		const struct iovec *p;
 | |
| 		size_t skip;
 | |
| 
 | |
| 		size -= count;
 | |
| 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 | |
| 			size_t len = min(count, p->iov_len - skip);
 | |
| 			size_t ret;
 | |
| 
 | |
| 			if (unlikely(!len))
 | |
| 				continue;
 | |
| 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
 | |
| 			count -= len - ret;
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		return count + size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_iov_iter_writeable);
 | |
| 
 | |
| void iov_iter_init(struct iov_iter *i, unsigned int direction,
 | |
| 			const struct iovec *iov, unsigned long nr_segs,
 | |
| 			size_t count)
 | |
| {
 | |
| 	WARN_ON(direction & ~(READ | WRITE));
 | |
| 	*i = (struct iov_iter) {
 | |
| 		.iter_type = ITER_IOVEC,
 | |
| 		.nofault = false,
 | |
| 		.user_backed = true,
 | |
| 		.data_source = direction,
 | |
| 		.__iov = iov,
 | |
| 		.nr_segs = nr_segs,
 | |
| 		.iov_offset = 0,
 | |
| 		.count = count
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_init);
 | |
| 
 | |
| // returns the offset in partial buffer (if any)
 | |
| static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
 | |
| {
 | |
| 	struct pipe_inode_info *pipe = i->pipe;
 | |
| 	int used = pipe->head - pipe->tail;
 | |
| 	int off = i->last_offset;
 | |
| 
 | |
| 	*npages = max((int)pipe->max_usage - used, 0);
 | |
| 
 | |
| 	if (off > 0 && off < PAGE_SIZE) { // anon and not full
 | |
| 		(*npages)++;
 | |
| 		return off;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
 | |
| 				struct iov_iter *i)
 | |
| {
 | |
| 	unsigned int off, chunk;
 | |
| 
 | |
| 	if (unlikely(bytes > i->count))
 | |
| 		bytes = i->count;
 | |
| 	if (unlikely(!bytes))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sanity(i))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (size_t n = bytes; n; n -= chunk) {
 | |
| 		struct page *page = append_pipe(i, n, &off);
 | |
| 		chunk = min_t(size_t, n, PAGE_SIZE - off);
 | |
| 		if (!page)
 | |
| 			return bytes - n;
 | |
| 		memcpy_to_page(page, off, addr, chunk);
 | |
| 		addr += chunk;
 | |
| 	}
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
 | |
| 			      __wsum sum, size_t off)
 | |
| {
 | |
| 	__wsum next = csum_partial_copy_nocheck(from, to, len);
 | |
| 	return csum_block_add(sum, next, off);
 | |
| }
 | |
| 
 | |
| static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
 | |
| 					 struct iov_iter *i, __wsum *sump)
 | |
| {
 | |
| 	__wsum sum = *sump;
 | |
| 	size_t off = 0;
 | |
| 	unsigned int chunk, r;
 | |
| 
 | |
| 	if (unlikely(bytes > i->count))
 | |
| 		bytes = i->count;
 | |
| 	if (unlikely(!bytes))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sanity(i))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		struct page *page = append_pipe(i, bytes, &r);
 | |
| 		char *p;
 | |
| 
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
 | |
| 		p = kmap_local_page(page);
 | |
| 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
 | |
| 		kunmap_local(p);
 | |
| 		off += chunk;
 | |
| 		bytes -= chunk;
 | |
| 	}
 | |
| 	*sump = sum;
 | |
| 	return off;
 | |
| }
 | |
| 
 | |
| size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	if (unlikely(iov_iter_is_pipe(i)))
 | |
| 		return copy_pipe_to_iter(addr, bytes, i);
 | |
| 	if (user_backed_iter(i))
 | |
| 		might_fault();
 | |
| 	iterate_and_advance(i, bytes, base, len, off,
 | |
| 		copyout(base, addr + off, len),
 | |
| 		memcpy(base, addr + off, len)
 | |
| 	)
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL(_copy_to_iter);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_COPY_MC
 | |
| static int copyout_mc(void __user *to, const void *from, size_t n)
 | |
| {
 | |
| 	if (access_ok(to, n)) {
 | |
| 		instrument_copy_to_user(to, from, n);
 | |
| 		n = copy_mc_to_user((__force void *) to, from, n);
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
 | |
| 				struct iov_iter *i)
 | |
| {
 | |
| 	size_t xfer = 0;
 | |
| 	unsigned int off, chunk;
 | |
| 
 | |
| 	if (unlikely(bytes > i->count))
 | |
| 		bytes = i->count;
 | |
| 	if (unlikely(!bytes))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sanity(i))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		struct page *page = append_pipe(i, bytes, &off);
 | |
| 		unsigned long rem;
 | |
| 		char *p;
 | |
| 
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
 | |
| 		p = kmap_local_page(page);
 | |
| 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
 | |
| 		chunk -= rem;
 | |
| 		kunmap_local(p);
 | |
| 		xfer += chunk;
 | |
| 		bytes -= chunk;
 | |
| 		if (rem) {
 | |
| 			iov_iter_revert(i, rem);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return xfer;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _copy_mc_to_iter - copy to iter with source memory error exception handling
 | |
|  * @addr: source kernel address
 | |
|  * @bytes: total transfer length
 | |
|  * @i: destination iterator
 | |
|  *
 | |
|  * The pmem driver deploys this for the dax operation
 | |
|  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
 | |
|  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
 | |
|  * successfully copied.
 | |
|  *
 | |
|  * The main differences between this and typical _copy_to_iter().
 | |
|  *
 | |
|  * * Typical tail/residue handling after a fault retries the copy
 | |
|  *   byte-by-byte until the fault happens again. Re-triggering machine
 | |
|  *   checks is potentially fatal so the implementation uses source
 | |
|  *   alignment and poison alignment assumptions to avoid re-triggering
 | |
|  *   hardware exceptions.
 | |
|  *
 | |
|  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
 | |
|  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
 | |
|  *   a short copy.
 | |
|  *
 | |
|  * Return: number of bytes copied (may be %0)
 | |
|  */
 | |
| size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	if (unlikely(iov_iter_is_pipe(i)))
 | |
| 		return copy_mc_pipe_to_iter(addr, bytes, i);
 | |
| 	if (user_backed_iter(i))
 | |
| 		might_fault();
 | |
| 	__iterate_and_advance(i, bytes, base, len, off,
 | |
| 		copyout_mc(base, addr + off, len),
 | |
| 		copy_mc_to_kernel(base, addr + off, len)
 | |
| 	)
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
 | |
| #endif /* CONFIG_ARCH_HAS_COPY_MC */
 | |
| 
 | |
| size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (user_backed_iter(i))
 | |
| 		might_fault();
 | |
| 	iterate_and_advance(i, bytes, base, len, off,
 | |
| 		copyin(addr + off, base, len),
 | |
| 		memcpy(addr + off, base, len)
 | |
| 	)
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL(_copy_from_iter);
 | |
| 
 | |
| size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	iterate_and_advance(i, bytes, base, len, off,
 | |
| 		__copy_from_user_inatomic_nocache(addr + off, base, len),
 | |
| 		memcpy(addr + off, base, len)
 | |
| 	)
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL(_copy_from_iter_nocache);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
 | |
| /**
 | |
|  * _copy_from_iter_flushcache - write destination through cpu cache
 | |
|  * @addr: destination kernel address
 | |
|  * @bytes: total transfer length
 | |
|  * @i: source iterator
 | |
|  *
 | |
|  * The pmem driver arranges for filesystem-dax to use this facility via
 | |
|  * dax_copy_from_iter() for ensuring that writes to persistent memory
 | |
|  * are flushed through the CPU cache. It is differentiated from
 | |
|  * _copy_from_iter_nocache() in that guarantees all data is flushed for
 | |
|  * all iterator types. The _copy_from_iter_nocache() only attempts to
 | |
|  * bypass the cache for the ITER_IOVEC case, and on some archs may use
 | |
|  * instructions that strand dirty-data in the cache.
 | |
|  *
 | |
|  * Return: number of bytes copied (may be %0)
 | |
|  */
 | |
| size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	iterate_and_advance(i, bytes, base, len, off,
 | |
| 		__copy_from_user_flushcache(addr + off, base, len),
 | |
| 		memcpy_flushcache(addr + off, base, len)
 | |
| 	)
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
 | |
| #endif
 | |
| 
 | |
| static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
 | |
| {
 | |
| 	struct page *head;
 | |
| 	size_t v = n + offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * The general case needs to access the page order in order
 | |
| 	 * to compute the page size.
 | |
| 	 * However, we mostly deal with order-0 pages and thus can
 | |
| 	 * avoid a possible cache line miss for requests that fit all
 | |
| 	 * page orders.
 | |
| 	 */
 | |
| 	if (n <= v && v <= PAGE_SIZE)
 | |
| 		return true;
 | |
| 
 | |
| 	head = compound_head(page);
 | |
| 	v += (page - head) << PAGE_SHIFT;
 | |
| 
 | |
| 	if (likely(n <= v && v <= (page_size(head))))
 | |
| 		return true;
 | |
| 	WARN_ON(1);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 | |
| 			 struct iov_iter *i)
 | |
| {
 | |
| 	size_t res = 0;
 | |
| 	if (unlikely(!page_copy_sane(page, offset, bytes)))
 | |
| 		return 0;
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	if (unlikely(iov_iter_is_pipe(i)))
 | |
| 		return copy_page_to_iter_pipe(page, offset, bytes, i);
 | |
| 	page += offset / PAGE_SIZE; // first subpage
 | |
| 	offset %= PAGE_SIZE;
 | |
| 	while (1) {
 | |
| 		void *kaddr = kmap_local_page(page);
 | |
| 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 | |
| 		n = _copy_to_iter(kaddr + offset, n, i);
 | |
| 		kunmap_local(kaddr);
 | |
| 		res += n;
 | |
| 		bytes -= n;
 | |
| 		if (!bytes || !n)
 | |
| 			break;
 | |
| 		offset += n;
 | |
| 		if (offset == PAGE_SIZE) {
 | |
| 			page++;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_to_iter);
 | |
| 
 | |
| size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
 | |
| 				 struct iov_iter *i)
 | |
| {
 | |
| 	size_t res = 0;
 | |
| 
 | |
| 	if (!page_copy_sane(page, offset, bytes))
 | |
| 		return 0;
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	if (unlikely(iov_iter_is_pipe(i)))
 | |
| 		return copy_page_to_iter_pipe(page, offset, bytes, i);
 | |
| 	page += offset / PAGE_SIZE; // first subpage
 | |
| 	offset %= PAGE_SIZE;
 | |
| 	while (1) {
 | |
| 		void *kaddr = kmap_local_page(page);
 | |
| 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 | |
| 
 | |
| 		iterate_and_advance(i, n, base, len, off,
 | |
| 			copyout_nofault(base, kaddr + offset + off, len),
 | |
| 			memcpy(base, kaddr + offset + off, len)
 | |
| 		)
 | |
| 		kunmap_local(kaddr);
 | |
| 		res += n;
 | |
| 		bytes -= n;
 | |
| 		if (!bytes || !n)
 | |
| 			break;
 | |
| 		offset += n;
 | |
| 		if (offset == PAGE_SIZE) {
 | |
| 			page++;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_to_iter_nofault);
 | |
| 
 | |
| size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
 | |
| 			 struct iov_iter *i)
 | |
| {
 | |
| 	size_t res = 0;
 | |
| 	if (!page_copy_sane(page, offset, bytes))
 | |
| 		return 0;
 | |
| 	page += offset / PAGE_SIZE; // first subpage
 | |
| 	offset %= PAGE_SIZE;
 | |
| 	while (1) {
 | |
| 		void *kaddr = kmap_local_page(page);
 | |
| 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 | |
| 		n = _copy_from_iter(kaddr + offset, n, i);
 | |
| 		kunmap_local(kaddr);
 | |
| 		res += n;
 | |
| 		bytes -= n;
 | |
| 		if (!bytes || !n)
 | |
| 			break;
 | |
| 		offset += n;
 | |
| 		if (offset == PAGE_SIZE) {
 | |
| 			page++;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_from_iter);
 | |
| 
 | |
| static size_t pipe_zero(size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	unsigned int chunk, off;
 | |
| 
 | |
| 	if (unlikely(bytes > i->count))
 | |
| 		bytes = i->count;
 | |
| 	if (unlikely(!bytes))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sanity(i))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (size_t n = bytes; n; n -= chunk) {
 | |
| 		struct page *page = append_pipe(i, n, &off);
 | |
| 		char *p;
 | |
| 
 | |
| 		if (!page)
 | |
| 			return bytes - n;
 | |
| 		chunk = min_t(size_t, n, PAGE_SIZE - off);
 | |
| 		p = kmap_local_page(page);
 | |
| 		memset(p + off, 0, chunk);
 | |
| 		kunmap_local(p);
 | |
| 	}
 | |
| 	return bytes;
 | |
| }
 | |
| 
 | |
| size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (unlikely(iov_iter_is_pipe(i)))
 | |
| 		return pipe_zero(bytes, i);
 | |
| 	iterate_and_advance(i, bytes, base, len, count,
 | |
| 		clear_user(base, len),
 | |
| 		memset(base, 0, len)
 | |
| 	)
 | |
| 
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_zero);
 | |
| 
 | |
| size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
 | |
| 				  struct iov_iter *i)
 | |
| {
 | |
| 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
 | |
| 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
 | |
| 		kunmap_atomic(kaddr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (WARN_ON_ONCE(!i->data_source)) {
 | |
| 		kunmap_atomic(kaddr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	iterate_and_advance(i, bytes, base, len, off,
 | |
| 		copyin(p + off, base, len),
 | |
| 		memcpy(p + off, base, len)
 | |
| 	)
 | |
| 	kunmap_atomic(kaddr);
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_from_iter_atomic);
 | |
| 
 | |
| static void pipe_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	struct pipe_inode_info *pipe = i->pipe;
 | |
| 	int off = i->last_offset;
 | |
| 
 | |
| 	if (!off && !size) {
 | |
| 		pipe_discard_from(pipe, i->start_head); // discard everything
 | |
| 		return;
 | |
| 	}
 | |
| 	i->count -= size;
 | |
| 	while (1) {
 | |
| 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
 | |
| 		if (off) /* make it relative to the beginning of buffer */
 | |
| 			size += abs(off) - buf->offset;
 | |
| 		if (size <= buf->len) {
 | |
| 			buf->len = size;
 | |
| 			i->last_offset = last_offset(buf);
 | |
| 			break;
 | |
| 		}
 | |
| 		size -= buf->len;
 | |
| 		i->head++;
 | |
| 		off = 0;
 | |
| 	}
 | |
| 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
 | |
| }
 | |
| 
 | |
| static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	const struct bio_vec *bvec, *end;
 | |
| 
 | |
| 	if (!i->count)
 | |
| 		return;
 | |
| 	i->count -= size;
 | |
| 
 | |
| 	size += i->iov_offset;
 | |
| 
 | |
| 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
 | |
| 		if (likely(size < bvec->bv_len))
 | |
| 			break;
 | |
| 		size -= bvec->bv_len;
 | |
| 	}
 | |
| 	i->iov_offset = size;
 | |
| 	i->nr_segs -= bvec - i->bvec;
 | |
| 	i->bvec = bvec;
 | |
| }
 | |
| 
 | |
| static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	const struct iovec *iov, *end;
 | |
| 
 | |
| 	if (!i->count)
 | |
| 		return;
 | |
| 	i->count -= size;
 | |
| 
 | |
| 	size += i->iov_offset; // from beginning of current segment
 | |
| 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
 | |
| 		if (likely(size < iov->iov_len))
 | |
| 			break;
 | |
| 		size -= iov->iov_len;
 | |
| 	}
 | |
| 	i->iov_offset = size;
 | |
| 	i->nr_segs -= iov - iter_iov(i);
 | |
| 	i->__iov = iov;
 | |
| }
 | |
| 
 | |
| void iov_iter_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	if (unlikely(i->count < size))
 | |
| 		size = i->count;
 | |
| 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
 | |
| 		i->iov_offset += size;
 | |
| 		i->count -= size;
 | |
| 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
 | |
| 		/* iovec and kvec have identical layouts */
 | |
| 		iov_iter_iovec_advance(i, size);
 | |
| 	} else if (iov_iter_is_bvec(i)) {
 | |
| 		iov_iter_bvec_advance(i, size);
 | |
| 	} else if (iov_iter_is_pipe(i)) {
 | |
| 		pipe_advance(i, size);
 | |
| 	} else if (iov_iter_is_discard(i)) {
 | |
| 		i->count -= size;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_advance);
 | |
| 
 | |
| void iov_iter_revert(struct iov_iter *i, size_t unroll)
 | |
| {
 | |
| 	if (!unroll)
 | |
| 		return;
 | |
| 	if (WARN_ON(unroll > MAX_RW_COUNT))
 | |
| 		return;
 | |
| 	i->count += unroll;
 | |
| 	if (unlikely(iov_iter_is_pipe(i))) {
 | |
| 		struct pipe_inode_info *pipe = i->pipe;
 | |
| 		unsigned int head = pipe->head;
 | |
| 
 | |
| 		while (head > i->start_head) {
 | |
| 			struct pipe_buffer *b = pipe_buf(pipe, --head);
 | |
| 			if (unroll < b->len) {
 | |
| 				b->len -= unroll;
 | |
| 				i->last_offset = last_offset(b);
 | |
| 				i->head = head;
 | |
| 				return;
 | |
| 			}
 | |
| 			unroll -= b->len;
 | |
| 			pipe_buf_release(pipe, b);
 | |
| 			pipe->head--;
 | |
| 		}
 | |
| 		i->last_offset = 0;
 | |
| 		i->head = head;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (unlikely(iov_iter_is_discard(i)))
 | |
| 		return;
 | |
| 	if (unroll <= i->iov_offset) {
 | |
| 		i->iov_offset -= unroll;
 | |
| 		return;
 | |
| 	}
 | |
| 	unroll -= i->iov_offset;
 | |
| 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
 | |
| 		BUG(); /* We should never go beyond the start of the specified
 | |
| 			* range since we might then be straying into pages that
 | |
| 			* aren't pinned.
 | |
| 			*/
 | |
| 	} else if (iov_iter_is_bvec(i)) {
 | |
| 		const struct bio_vec *bvec = i->bvec;
 | |
| 		while (1) {
 | |
| 			size_t n = (--bvec)->bv_len;
 | |
| 			i->nr_segs++;
 | |
| 			if (unroll <= n) {
 | |
| 				i->bvec = bvec;
 | |
| 				i->iov_offset = n - unroll;
 | |
| 				return;
 | |
| 			}
 | |
| 			unroll -= n;
 | |
| 		}
 | |
| 	} else { /* same logics for iovec and kvec */
 | |
| 		const struct iovec *iov = iter_iov(i);
 | |
| 		while (1) {
 | |
| 			size_t n = (--iov)->iov_len;
 | |
| 			i->nr_segs++;
 | |
| 			if (unroll <= n) {
 | |
| 				i->__iov = iov;
 | |
| 				i->iov_offset = n - unroll;
 | |
| 				return;
 | |
| 			}
 | |
| 			unroll -= n;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_revert);
 | |
| 
 | |
| /*
 | |
|  * Return the count of just the current iov_iter segment.
 | |
|  */
 | |
| size_t iov_iter_single_seg_count(const struct iov_iter *i)
 | |
| {
 | |
| 	if (i->nr_segs > 1) {
 | |
| 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
 | |
| 		if (iov_iter_is_bvec(i))
 | |
| 			return min(i->count, i->bvec->bv_len - i->iov_offset);
 | |
| 	}
 | |
| 	return i->count;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_single_seg_count);
 | |
| 
 | |
| void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
 | |
| 			const struct kvec *kvec, unsigned long nr_segs,
 | |
| 			size_t count)
 | |
| {
 | |
| 	WARN_ON(direction & ~(READ | WRITE));
 | |
| 	*i = (struct iov_iter){
 | |
| 		.iter_type = ITER_KVEC,
 | |
| 		.data_source = direction,
 | |
| 		.kvec = kvec,
 | |
| 		.nr_segs = nr_segs,
 | |
| 		.iov_offset = 0,
 | |
| 		.count = count
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_kvec);
 | |
| 
 | |
| void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
 | |
| 			const struct bio_vec *bvec, unsigned long nr_segs,
 | |
| 			size_t count)
 | |
| {
 | |
| 	WARN_ON(direction & ~(READ | WRITE));
 | |
| 	*i = (struct iov_iter){
 | |
| 		.iter_type = ITER_BVEC,
 | |
| 		.data_source = direction,
 | |
| 		.bvec = bvec,
 | |
| 		.nr_segs = nr_segs,
 | |
| 		.iov_offset = 0,
 | |
| 		.count = count
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_bvec);
 | |
| 
 | |
| void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
 | |
| 			struct pipe_inode_info *pipe,
 | |
| 			size_t count)
 | |
| {
 | |
| 	BUG_ON(direction != READ);
 | |
| 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
 | |
| 	*i = (struct iov_iter){
 | |
| 		.iter_type = ITER_PIPE,
 | |
| 		.data_source = false,
 | |
| 		.pipe = pipe,
 | |
| 		.head = pipe->head,
 | |
| 		.start_head = pipe->head,
 | |
| 		.last_offset = 0,
 | |
| 		.count = count
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_pipe);
 | |
| 
 | |
| /**
 | |
|  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
 | |
|  * @i: The iterator to initialise.
 | |
|  * @direction: The direction of the transfer.
 | |
|  * @xarray: The xarray to access.
 | |
|  * @start: The start file position.
 | |
|  * @count: The size of the I/O buffer in bytes.
 | |
|  *
 | |
|  * Set up an I/O iterator to either draw data out of the pages attached to an
 | |
|  * inode or to inject data into those pages.  The pages *must* be prevented
 | |
|  * from evaporation, either by taking a ref on them or locking them by the
 | |
|  * caller.
 | |
|  */
 | |
| void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
 | |
| 		     struct xarray *xarray, loff_t start, size_t count)
 | |
| {
 | |
| 	BUG_ON(direction & ~1);
 | |
| 	*i = (struct iov_iter) {
 | |
| 		.iter_type = ITER_XARRAY,
 | |
| 		.data_source = direction,
 | |
| 		.xarray = xarray,
 | |
| 		.xarray_start = start,
 | |
| 		.count = count,
 | |
| 		.iov_offset = 0
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_xarray);
 | |
| 
 | |
| /**
 | |
|  * iov_iter_discard - Initialise an I/O iterator that discards data
 | |
|  * @i: The iterator to initialise.
 | |
|  * @direction: The direction of the transfer.
 | |
|  * @count: The size of the I/O buffer in bytes.
 | |
|  *
 | |
|  * Set up an I/O iterator that just discards everything that's written to it.
 | |
|  * It's only available as a READ iterator.
 | |
|  */
 | |
| void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
 | |
| {
 | |
| 	BUG_ON(direction != READ);
 | |
| 	*i = (struct iov_iter){
 | |
| 		.iter_type = ITER_DISCARD,
 | |
| 		.data_source = false,
 | |
| 		.count = count,
 | |
| 		.iov_offset = 0
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_discard);
 | |
| 
 | |
| static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
 | |
| 				   unsigned len_mask)
 | |
| {
 | |
| 	size_t size = i->count;
 | |
| 	size_t skip = i->iov_offset;
 | |
| 	unsigned k;
 | |
| 
 | |
| 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
 | |
| 		const struct iovec *iov = iter_iov(i) + k;
 | |
| 		size_t len = iov->iov_len - skip;
 | |
| 
 | |
| 		if (len > size)
 | |
| 			len = size;
 | |
| 		if (len & len_mask)
 | |
| 			return false;
 | |
| 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
 | |
| 			return false;
 | |
| 
 | |
| 		size -= len;
 | |
| 		if (!size)
 | |
| 			break;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
 | |
| 				  unsigned len_mask)
 | |
| {
 | |
| 	size_t size = i->count;
 | |
| 	unsigned skip = i->iov_offset;
 | |
| 	unsigned k;
 | |
| 
 | |
| 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
 | |
| 		size_t len = i->bvec[k].bv_len - skip;
 | |
| 
 | |
| 		if (len > size)
 | |
| 			len = size;
 | |
| 		if (len & len_mask)
 | |
| 			return false;
 | |
| 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
 | |
| 			return false;
 | |
| 
 | |
| 		size -= len;
 | |
| 		if (!size)
 | |
| 			break;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
 | |
|  * 	are aligned to the parameters.
 | |
|  *
 | |
|  * @i: &struct iov_iter to restore
 | |
|  * @addr_mask: bit mask to check against the iov element's addresses
 | |
|  * @len_mask: bit mask to check against the iov element's lengths
 | |
|  *
 | |
|  * Return: false if any addresses or lengths intersect with the provided masks
 | |
|  */
 | |
| bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
 | |
| 			 unsigned len_mask)
 | |
| {
 | |
| 	if (likely(iter_is_ubuf(i))) {
 | |
| 		if (i->count & len_mask)
 | |
| 			return false;
 | |
| 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
 | |
| 			return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
 | |
| 
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
 | |
| 
 | |
| 	if (iov_iter_is_pipe(i)) {
 | |
| 		size_t size = i->count;
 | |
| 
 | |
| 		if (size & len_mask)
 | |
| 			return false;
 | |
| 		if (size && i->last_offset > 0) {
 | |
| 			if (i->last_offset & addr_mask)
 | |
| 				return false;
 | |
| 		}
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (iov_iter_is_xarray(i)) {
 | |
| 		if (i->count & len_mask)
 | |
| 			return false;
 | |
| 		if ((i->xarray_start + i->iov_offset) & addr_mask)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
 | |
| 
 | |
| static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
 | |
| {
 | |
| 	unsigned long res = 0;
 | |
| 	size_t size = i->count;
 | |
| 	size_t skip = i->iov_offset;
 | |
| 	unsigned k;
 | |
| 
 | |
| 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
 | |
| 		const struct iovec *iov = iter_iov(i) + k;
 | |
| 		size_t len = iov->iov_len - skip;
 | |
| 		if (len) {
 | |
| 			res |= (unsigned long)iov->iov_base + skip;
 | |
| 			if (len > size)
 | |
| 				len = size;
 | |
| 			res |= len;
 | |
| 			size -= len;
 | |
| 			if (!size)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
 | |
| {
 | |
| 	unsigned res = 0;
 | |
| 	size_t size = i->count;
 | |
| 	unsigned skip = i->iov_offset;
 | |
| 	unsigned k;
 | |
| 
 | |
| 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
 | |
| 		size_t len = i->bvec[k].bv_len - skip;
 | |
| 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
 | |
| 		if (len > size)
 | |
| 			len = size;
 | |
| 		res |= len;
 | |
| 		size -= len;
 | |
| 		if (!size)
 | |
| 			break;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| unsigned long iov_iter_alignment(const struct iov_iter *i)
 | |
| {
 | |
| 	if (likely(iter_is_ubuf(i))) {
 | |
| 		size_t size = i->count;
 | |
| 		if (size)
 | |
| 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* iovec and kvec have identical layouts */
 | |
| 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 		return iov_iter_alignment_iovec(i);
 | |
| 
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return iov_iter_alignment_bvec(i);
 | |
| 
 | |
| 	if (iov_iter_is_pipe(i)) {
 | |
| 		size_t size = i->count;
 | |
| 
 | |
| 		if (size && i->last_offset > 0)
 | |
| 			return size | i->last_offset;
 | |
| 		return size;
 | |
| 	}
 | |
| 
 | |
| 	if (iov_iter_is_xarray(i))
 | |
| 		return (i->xarray_start + i->iov_offset) | i->count;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_alignment);
 | |
| 
 | |
| unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
 | |
| {
 | |
| 	unsigned long res = 0;
 | |
| 	unsigned long v = 0;
 | |
| 	size_t size = i->count;
 | |
| 	unsigned k;
 | |
| 
 | |
| 	if (iter_is_ubuf(i))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (WARN_ON(!iter_is_iovec(i)))
 | |
| 		return ~0U;
 | |
| 
 | |
| 	for (k = 0; k < i->nr_segs; k++) {
 | |
| 		const struct iovec *iov = iter_iov(i) + k;
 | |
| 		if (iov->iov_len) {
 | |
| 			unsigned long base = (unsigned long)iov->iov_base;
 | |
| 			if (v) // if not the first one
 | |
| 				res |= base | v; // this start | previous end
 | |
| 			v = base + iov->iov_len;
 | |
| 			if (size <= iov->iov_len)
 | |
| 				break;
 | |
| 			size -= iov->iov_len;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_gap_alignment);
 | |
| 
 | |
| static int want_pages_array(struct page ***res, size_t size,
 | |
| 			    size_t start, unsigned int maxpages)
 | |
| {
 | |
| 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
 | |
| 
 | |
| 	if (count > maxpages)
 | |
| 		count = maxpages;
 | |
| 	WARN_ON(!count);	// caller should've prevented that
 | |
| 	if (!*res) {
 | |
| 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
 | |
| 		if (!*res)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t pipe_get_pages(struct iov_iter *i,
 | |
| 		   struct page ***pages, size_t maxsize, unsigned maxpages,
 | |
| 		   size_t *start)
 | |
| {
 | |
| 	unsigned int npages, count, off, chunk;
 | |
| 	struct page **p;
 | |
| 	size_t left;
 | |
| 
 | |
| 	if (!sanity(i))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	*start = off = pipe_npages(i, &npages);
 | |
| 	if (!npages)
 | |
| 		return -EFAULT;
 | |
| 	count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
 | |
| 	if (!count)
 | |
| 		return -ENOMEM;
 | |
| 	p = *pages;
 | |
| 	for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
 | |
| 		struct page *page = append_pipe(i, left, &off);
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 		chunk = min_t(size_t, left, PAGE_SIZE - off);
 | |
| 		get_page(*p++ = page);
 | |
| 	}
 | |
| 	if (!npages)
 | |
| 		return -EFAULT;
 | |
| 	return maxsize - left;
 | |
| }
 | |
| 
 | |
| static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
 | |
| 					  pgoff_t index, unsigned int nr_pages)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	struct page *page;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas))) {
 | |
| 			xas_reset(&xas);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pages[ret] = find_subpage(page, xas.xa_index);
 | |
| 		get_page(pages[ret]);
 | |
| 		if (++ret == nr_pages)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t iter_xarray_get_pages(struct iov_iter *i,
 | |
| 				     struct page ***pages, size_t maxsize,
 | |
| 				     unsigned maxpages, size_t *_start_offset)
 | |
| {
 | |
| 	unsigned nr, offset, count;
 | |
| 	pgoff_t index;
 | |
| 	loff_t pos;
 | |
| 
 | |
| 	pos = i->xarray_start + i->iov_offset;
 | |
| 	index = pos >> PAGE_SHIFT;
 | |
| 	offset = pos & ~PAGE_MASK;
 | |
| 	*_start_offset = offset;
 | |
| 
 | |
| 	count = want_pages_array(pages, maxsize, offset, maxpages);
 | |
| 	if (!count)
 | |
| 		return -ENOMEM;
 | |
| 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
 | |
| 	if (nr == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
 | |
| 	i->iov_offset += maxsize;
 | |
| 	i->count -= maxsize;
 | |
| 	return maxsize;
 | |
| }
 | |
| 
 | |
| /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
 | |
| static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
 | |
| {
 | |
| 	size_t skip;
 | |
| 	long k;
 | |
| 
 | |
| 	if (iter_is_ubuf(i))
 | |
| 		return (unsigned long)i->ubuf + i->iov_offset;
 | |
| 
 | |
| 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
 | |
| 		const struct iovec *iov = iter_iov(i) + k;
 | |
| 		size_t len = iov->iov_len - skip;
 | |
| 
 | |
| 		if (unlikely(!len))
 | |
| 			continue;
 | |
| 		if (*size > len)
 | |
| 			*size = len;
 | |
| 		return (unsigned long)iov->iov_base + skip;
 | |
| 	}
 | |
| 	BUG(); // if it had been empty, we wouldn't get called
 | |
| }
 | |
| 
 | |
| /* must be done on non-empty ITER_BVEC one */
 | |
| static struct page *first_bvec_segment(const struct iov_iter *i,
 | |
| 				       size_t *size, size_t *start)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	size_t skip = i->iov_offset, len;
 | |
| 
 | |
| 	len = i->bvec->bv_len - skip;
 | |
| 	if (*size > len)
 | |
| 		*size = len;
 | |
| 	skip += i->bvec->bv_offset;
 | |
| 	page = i->bvec->bv_page + skip / PAGE_SIZE;
 | |
| 	*start = skip % PAGE_SIZE;
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
 | |
| 		   struct page ***pages, size_t maxsize,
 | |
| 		   unsigned int maxpages, size_t *start,
 | |
| 		   iov_iter_extraction_t extraction_flags)
 | |
| {
 | |
| 	unsigned int n, gup_flags = 0;
 | |
| 
 | |
| 	if (maxsize > i->count)
 | |
| 		maxsize = i->count;
 | |
| 	if (!maxsize)
 | |
| 		return 0;
 | |
| 	if (maxsize > MAX_RW_COUNT)
 | |
| 		maxsize = MAX_RW_COUNT;
 | |
| 	if (extraction_flags & ITER_ALLOW_P2PDMA)
 | |
| 		gup_flags |= FOLL_PCI_P2PDMA;
 | |
| 
 | |
| 	if (likely(user_backed_iter(i))) {
 | |
| 		unsigned long addr;
 | |
| 		int res;
 | |
| 
 | |
| 		if (iov_iter_rw(i) != WRITE)
 | |
| 			gup_flags |= FOLL_WRITE;
 | |
| 		if (i->nofault)
 | |
| 			gup_flags |= FOLL_NOFAULT;
 | |
| 
 | |
| 		addr = first_iovec_segment(i, &maxsize);
 | |
| 		*start = addr % PAGE_SIZE;
 | |
| 		addr &= PAGE_MASK;
 | |
| 		n = want_pages_array(pages, maxsize, *start, maxpages);
 | |
| 		if (!n)
 | |
| 			return -ENOMEM;
 | |
| 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
 | |
| 		if (unlikely(res <= 0))
 | |
| 			return res;
 | |
| 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
 | |
| 		iov_iter_advance(i, maxsize);
 | |
| 		return maxsize;
 | |
| 	}
 | |
| 	if (iov_iter_is_bvec(i)) {
 | |
| 		struct page **p;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = first_bvec_segment(i, &maxsize, start);
 | |
| 		n = want_pages_array(pages, maxsize, *start, maxpages);
 | |
| 		if (!n)
 | |
| 			return -ENOMEM;
 | |
| 		p = *pages;
 | |
| 		for (int k = 0; k < n; k++)
 | |
| 			get_page(p[k] = page + k);
 | |
| 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
 | |
| 		i->count -= maxsize;
 | |
| 		i->iov_offset += maxsize;
 | |
| 		if (i->iov_offset == i->bvec->bv_len) {
 | |
| 			i->iov_offset = 0;
 | |
| 			i->bvec++;
 | |
| 			i->nr_segs--;
 | |
| 		}
 | |
| 		return maxsize;
 | |
| 	}
 | |
| 	if (iov_iter_is_pipe(i))
 | |
| 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
 | |
| 	if (iov_iter_is_xarray(i))
 | |
| 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| ssize_t iov_iter_get_pages(struct iov_iter *i,
 | |
| 		   struct page **pages, size_t maxsize, unsigned maxpages,
 | |
| 		   size_t *start, iov_iter_extraction_t extraction_flags)
 | |
| {
 | |
| 	if (!maxpages)
 | |
| 		return 0;
 | |
| 	BUG_ON(!pages);
 | |
| 
 | |
| 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
 | |
| 					  start, extraction_flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(iov_iter_get_pages);
 | |
| 
 | |
| ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
 | |
| 		size_t maxsize, unsigned maxpages, size_t *start)
 | |
| {
 | |
| 	return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_get_pages2);
 | |
| 
 | |
| ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
 | |
| 		   struct page ***pages, size_t maxsize,
 | |
| 		   size_t *start, iov_iter_extraction_t extraction_flags)
 | |
| {
 | |
| 	ssize_t len;
 | |
| 
 | |
| 	*pages = NULL;
 | |
| 
 | |
| 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
 | |
| 					 extraction_flags);
 | |
| 	if (len <= 0) {
 | |
| 		kvfree(*pages);
 | |
| 		*pages = NULL;
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
 | |
| 
 | |
| ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
 | |
| 		struct page ***pages, size_t maxsize, size_t *start)
 | |
| {
 | |
| 	return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
 | |
| 
 | |
| size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
 | |
| 			       struct iov_iter *i)
 | |
| {
 | |
| 	__wsum sum, next;
 | |
| 	sum = *csum;
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	iterate_and_advance(i, bytes, base, len, off, ({
 | |
| 		next = csum_and_copy_from_user(base, addr + off, len);
 | |
| 		sum = csum_block_add(sum, next, off);
 | |
| 		next ? 0 : len;
 | |
| 	}), ({
 | |
| 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
 | |
| 	})
 | |
| 	)
 | |
| 	*csum = sum;
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL(csum_and_copy_from_iter);
 | |
| 
 | |
| size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
 | |
| 			     struct iov_iter *i)
 | |
| {
 | |
| 	struct csum_state *csstate = _csstate;
 | |
| 	__wsum sum, next;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	if (unlikely(iov_iter_is_discard(i))) {
 | |
| 		WARN_ON(1);	/* for now */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	sum = csum_shift(csstate->csum, csstate->off);
 | |
| 	if (unlikely(iov_iter_is_pipe(i)))
 | |
| 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
 | |
| 	else iterate_and_advance(i, bytes, base, len, off, ({
 | |
| 		next = csum_and_copy_to_user(addr + off, base, len);
 | |
| 		sum = csum_block_add(sum, next, off);
 | |
| 		next ? 0 : len;
 | |
| 	}), ({
 | |
| 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
 | |
| 	})
 | |
| 	)
 | |
| 	csstate->csum = csum_shift(sum, csstate->off);
 | |
| 	csstate->off += bytes;
 | |
| 	return bytes;
 | |
| }
 | |
| EXPORT_SYMBOL(csum_and_copy_to_iter);
 | |
| 
 | |
| size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
 | |
| 		struct iov_iter *i)
 | |
| {
 | |
| #ifdef CONFIG_CRYPTO_HASH
 | |
| 	struct ahash_request *hash = hashp;
 | |
| 	struct scatterlist sg;
 | |
| 	size_t copied;
 | |
| 
 | |
| 	copied = copy_to_iter(addr, bytes, i);
 | |
| 	sg_init_one(&sg, addr, copied);
 | |
| 	ahash_request_set_crypt(hash, &sg, NULL, copied);
 | |
| 	crypto_ahash_update(hash);
 | |
| 	return copied;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(hash_and_copy_to_iter);
 | |
| 
 | |
| static int iov_npages(const struct iov_iter *i, int maxpages)
 | |
| {
 | |
| 	size_t skip = i->iov_offset, size = i->count;
 | |
| 	const struct iovec *p;
 | |
| 	int npages = 0;
 | |
| 
 | |
| 	for (p = iter_iov(i); size; skip = 0, p++) {
 | |
| 		unsigned offs = offset_in_page(p->iov_base + skip);
 | |
| 		size_t len = min(p->iov_len - skip, size);
 | |
| 
 | |
| 		if (len) {
 | |
| 			size -= len;
 | |
| 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
 | |
| 			if (unlikely(npages > maxpages))
 | |
| 				return maxpages;
 | |
| 		}
 | |
| 	}
 | |
| 	return npages;
 | |
| }
 | |
| 
 | |
| static int bvec_npages(const struct iov_iter *i, int maxpages)
 | |
| {
 | |
| 	size_t skip = i->iov_offset, size = i->count;
 | |
| 	const struct bio_vec *p;
 | |
| 	int npages = 0;
 | |
| 
 | |
| 	for (p = i->bvec; size; skip = 0, p++) {
 | |
| 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
 | |
| 		size_t len = min(p->bv_len - skip, size);
 | |
| 
 | |
| 		size -= len;
 | |
| 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
 | |
| 		if (unlikely(npages > maxpages))
 | |
| 			return maxpages;
 | |
| 	}
 | |
| 	return npages;
 | |
| }
 | |
| 
 | |
| int iov_iter_npages(const struct iov_iter *i, int maxpages)
 | |
| {
 | |
| 	if (unlikely(!i->count))
 | |
| 		return 0;
 | |
| 	if (likely(iter_is_ubuf(i))) {
 | |
| 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
 | |
| 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
 | |
| 		return min(npages, maxpages);
 | |
| 	}
 | |
| 	/* iovec and kvec have identical layouts */
 | |
| 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 		return iov_npages(i, maxpages);
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return bvec_npages(i, maxpages);
 | |
| 	if (iov_iter_is_pipe(i)) {
 | |
| 		int npages;
 | |
| 
 | |
| 		if (!sanity(i))
 | |
| 			return 0;
 | |
| 
 | |
| 		pipe_npages(i, &npages);
 | |
| 		return min(npages, maxpages);
 | |
| 	}
 | |
| 	if (iov_iter_is_xarray(i)) {
 | |
| 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
 | |
| 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
 | |
| 		return min(npages, maxpages);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_npages);
 | |
| 
 | |
| const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
 | |
| {
 | |
| 	*new = *old;
 | |
| 	if (unlikely(iov_iter_is_pipe(new))) {
 | |
| 		WARN_ON(1);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (iov_iter_is_bvec(new))
 | |
| 		return new->bvec = kmemdup(new->bvec,
 | |
| 				    new->nr_segs * sizeof(struct bio_vec),
 | |
| 				    flags);
 | |
| 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
 | |
| 		/* iovec and kvec have identical layout */
 | |
| 		return new->__iov = kmemdup(new->__iov,
 | |
| 				   new->nr_segs * sizeof(struct iovec),
 | |
| 				   flags);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(dup_iter);
 | |
| 
 | |
| static int copy_compat_iovec_from_user(struct iovec *iov,
 | |
| 		const struct iovec __user *uvec, unsigned long nr_segs)
 | |
| {
 | |
| 	const struct compat_iovec __user *uiov =
 | |
| 		(const struct compat_iovec __user *)uvec;
 | |
| 	int ret = -EFAULT, i;
 | |
| 
 | |
| 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	for (i = 0; i < nr_segs; i++) {
 | |
| 		compat_uptr_t buf;
 | |
| 		compat_ssize_t len;
 | |
| 
 | |
| 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
 | |
| 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
 | |
| 
 | |
| 		/* check for compat_size_t not fitting in compat_ssize_t .. */
 | |
| 		if (len < 0) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto uaccess_end;
 | |
| 		}
 | |
| 		iov[i].iov_base = compat_ptr(buf);
 | |
| 		iov[i].iov_len = len;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| uaccess_end:
 | |
| 	user_access_end();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int copy_iovec_from_user(struct iovec *iov,
 | |
| 		const struct iovec __user *uvec, unsigned long nr_segs)
 | |
| {
 | |
| 	unsigned long seg;
 | |
| 
 | |
| 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
 | |
| 		return -EFAULT;
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		if ((ssize_t)iov[seg].iov_len < 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct iovec *iovec_from_user(const struct iovec __user *uvec,
 | |
| 		unsigned long nr_segs, unsigned long fast_segs,
 | |
| 		struct iovec *fast_iov, bool compat)
 | |
| {
 | |
| 	struct iovec *iov = fast_iov;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
 | |
| 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
 | |
| 	 * traditionally returned zero for zero segments, so...
 | |
| 	 */
 | |
| 	if (nr_segs == 0)
 | |
| 		return iov;
 | |
| 	if (nr_segs > UIO_MAXIOV)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	if (nr_segs > fast_segs) {
 | |
| 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
 | |
| 		if (!iov)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	if (compat)
 | |
| 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
 | |
| 	else
 | |
| 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
 | |
| 	if (ret) {
 | |
| 		if (iov != fast_iov)
 | |
| 			kfree(iov);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	return iov;
 | |
| }
 | |
| 
 | |
| ssize_t __import_iovec(int type, const struct iovec __user *uvec,
 | |
| 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
 | |
| 		 struct iov_iter *i, bool compat)
 | |
| {
 | |
| 	ssize_t total_len = 0;
 | |
| 	unsigned long seg;
 | |
| 	struct iovec *iov;
 | |
| 
 | |
| 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
 | |
| 	if (IS_ERR(iov)) {
 | |
| 		*iovp = NULL;
 | |
| 		return PTR_ERR(iov);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * According to the Single Unix Specification we should return EINVAL if
 | |
| 	 * an element length is < 0 when cast to ssize_t or if the total length
 | |
| 	 * would overflow the ssize_t return value of the system call.
 | |
| 	 *
 | |
| 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
 | |
| 	 * overflow case.
 | |
| 	 */
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		ssize_t len = (ssize_t)iov[seg].iov_len;
 | |
| 
 | |
| 		if (!access_ok(iov[seg].iov_base, len)) {
 | |
| 			if (iov != *iovp)
 | |
| 				kfree(iov);
 | |
| 			*iovp = NULL;
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		if (len > MAX_RW_COUNT - total_len) {
 | |
| 			len = MAX_RW_COUNT - total_len;
 | |
| 			iov[seg].iov_len = len;
 | |
| 		}
 | |
| 		total_len += len;
 | |
| 	}
 | |
| 
 | |
| 	iov_iter_init(i, type, iov, nr_segs, total_len);
 | |
| 	if (iov == *iovp)
 | |
| 		*iovp = NULL;
 | |
| 	else
 | |
| 		*iovp = iov;
 | |
| 	return total_len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * import_iovec() - Copy an array of &struct iovec from userspace
 | |
|  *     into the kernel, check that it is valid, and initialize a new
 | |
|  *     &struct iov_iter iterator to access it.
 | |
|  *
 | |
|  * @type: One of %READ or %WRITE.
 | |
|  * @uvec: Pointer to the userspace array.
 | |
|  * @nr_segs: Number of elements in userspace array.
 | |
|  * @fast_segs: Number of elements in @iov.
 | |
|  * @iovp: (input and output parameter) Pointer to pointer to (usually small
 | |
|  *     on-stack) kernel array.
 | |
|  * @i: Pointer to iterator that will be initialized on success.
 | |
|  *
 | |
|  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
 | |
|  * then this function places %NULL in *@iov on return. Otherwise, a new
 | |
|  * array will be allocated and the result placed in *@iov. This means that
 | |
|  * the caller may call kfree() on *@iov regardless of whether the small
 | |
|  * on-stack array was used or not (and regardless of whether this function
 | |
|  * returns an error or not).
 | |
|  *
 | |
|  * Return: Negative error code on error, bytes imported on success
 | |
|  */
 | |
| ssize_t import_iovec(int type, const struct iovec __user *uvec,
 | |
| 		 unsigned nr_segs, unsigned fast_segs,
 | |
| 		 struct iovec **iovp, struct iov_iter *i)
 | |
| {
 | |
| 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
 | |
| 			      in_compat_syscall());
 | |
| }
 | |
| EXPORT_SYMBOL(import_iovec);
 | |
| 
 | |
| int import_single_range(int rw, void __user *buf, size_t len,
 | |
| 		 struct iovec *iov, struct iov_iter *i)
 | |
| {
 | |
| 	if (len > MAX_RW_COUNT)
 | |
| 		len = MAX_RW_COUNT;
 | |
| 	if (unlikely(!access_ok(buf, len)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	iov->iov_base = buf;
 | |
| 	iov->iov_len = len;
 | |
| 	iov_iter_init(i, rw, iov, 1, len);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(import_single_range);
 | |
| 
 | |
| int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
 | |
| {
 | |
| 	if (len > MAX_RW_COUNT)
 | |
| 		len = MAX_RW_COUNT;
 | |
| 	if (unlikely(!access_ok(buf, len)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	iov_iter_ubuf(i, rw, buf, len);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(import_ubuf);
 | |
| 
 | |
| /**
 | |
|  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
 | |
|  *     iov_iter_save_state() was called.
 | |
|  *
 | |
|  * @i: &struct iov_iter to restore
 | |
|  * @state: state to restore from
 | |
|  *
 | |
|  * Used after iov_iter_save_state() to bring restore @i, if operations may
 | |
|  * have advanced it.
 | |
|  *
 | |
|  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
 | |
|  */
 | |
| void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
 | |
| 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
 | |
| 		return;
 | |
| 	i->iov_offset = state->iov_offset;
 | |
| 	i->count = state->count;
 | |
| 	if (iter_is_ubuf(i))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * For the *vec iters, nr_segs + iov is constant - if we increment
 | |
| 	 * the vec, then we also decrement the nr_segs count. Hence we don't
 | |
| 	 * need to track both of these, just one is enough and we can deduct
 | |
| 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
 | |
| 	 * size, so we can just increment the iov pointer as they are unionzed.
 | |
| 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
 | |
| 	 * not. Be safe and handle it separately.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		i->bvec -= state->nr_segs - i->nr_segs;
 | |
| 	else
 | |
| 		i->__iov -= state->nr_segs - i->nr_segs;
 | |
| 	i->nr_segs = state->nr_segs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
 | |
|  * get references on the pages, nor does it get a pin on them.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
 | |
| 					     struct page ***pages, size_t maxsize,
 | |
| 					     unsigned int maxpages,
 | |
| 					     iov_iter_extraction_t extraction_flags,
 | |
| 					     size_t *offset0)
 | |
| {
 | |
| 	struct page *page, **p;
 | |
| 	unsigned int nr = 0, offset;
 | |
| 	loff_t pos = i->xarray_start + i->iov_offset;
 | |
| 	pgoff_t index = pos >> PAGE_SHIFT;
 | |
| 	XA_STATE(xas, i->xarray, index);
 | |
| 
 | |
| 	offset = pos & ~PAGE_MASK;
 | |
| 	*offset0 = offset;
 | |
| 
 | |
| 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	p = *pages;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas))) {
 | |
| 			xas_reset(&xas);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		p[nr++] = find_subpage(page, xas.xa_index);
 | |
| 		if (nr == maxpages)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
 | |
| 	iov_iter_advance(i, maxsize);
 | |
| 	return maxsize;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
 | |
|  * not get references on the pages, nor does it get a pin on them.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
 | |
| 					   struct page ***pages, size_t maxsize,
 | |
| 					   unsigned int maxpages,
 | |
| 					   iov_iter_extraction_t extraction_flags,
 | |
| 					   size_t *offset0)
 | |
| {
 | |
| 	struct page **p, *page;
 | |
| 	size_t skip = i->iov_offset, offset, size;
 | |
| 	int k;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (i->nr_segs == 0)
 | |
| 			return 0;
 | |
| 		size = min(maxsize, i->bvec->bv_len - skip);
 | |
| 		if (size)
 | |
| 			break;
 | |
| 		i->iov_offset = 0;
 | |
| 		i->nr_segs--;
 | |
| 		i->bvec++;
 | |
| 		skip = 0;
 | |
| 	}
 | |
| 
 | |
| 	skip += i->bvec->bv_offset;
 | |
| 	page = i->bvec->bv_page + skip / PAGE_SIZE;
 | |
| 	offset = skip % PAGE_SIZE;
 | |
| 	*offset0 = offset;
 | |
| 
 | |
| 	maxpages = want_pages_array(pages, size, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	p = *pages;
 | |
| 	for (k = 0; k < maxpages; k++)
 | |
| 		p[k] = page + k;
 | |
| 
 | |
| 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
 | |
| 	iov_iter_advance(i, size);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
 | |
|  * This does not get references on the pages, nor does it get a pin on them.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
 | |
| 					   struct page ***pages, size_t maxsize,
 | |
| 					   unsigned int maxpages,
 | |
| 					   iov_iter_extraction_t extraction_flags,
 | |
| 					   size_t *offset0)
 | |
| {
 | |
| 	struct page **p, *page;
 | |
| 	const void *kaddr;
 | |
| 	size_t skip = i->iov_offset, offset, len, size;
 | |
| 	int k;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (i->nr_segs == 0)
 | |
| 			return 0;
 | |
| 		size = min(maxsize, i->kvec->iov_len - skip);
 | |
| 		if (size)
 | |
| 			break;
 | |
| 		i->iov_offset = 0;
 | |
| 		i->nr_segs--;
 | |
| 		i->kvec++;
 | |
| 		skip = 0;
 | |
| 	}
 | |
| 
 | |
| 	kaddr = i->kvec->iov_base + skip;
 | |
| 	offset = (unsigned long)kaddr & ~PAGE_MASK;
 | |
| 	*offset0 = offset;
 | |
| 
 | |
| 	maxpages = want_pages_array(pages, size, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	p = *pages;
 | |
| 
 | |
| 	kaddr -= offset;
 | |
| 	len = offset + size;
 | |
| 	for (k = 0; k < maxpages; k++) {
 | |
| 		size_t seg = min_t(size_t, len, PAGE_SIZE);
 | |
| 
 | |
| 		if (is_vmalloc_or_module_addr(kaddr))
 | |
| 			page = vmalloc_to_page(kaddr);
 | |
| 		else
 | |
| 			page = virt_to_page(kaddr);
 | |
| 
 | |
| 		p[k] = page;
 | |
| 		len -= seg;
 | |
| 		kaddr += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
 | |
| 	iov_iter_advance(i, size);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of contiguous pages from a user iterator and get a pin on
 | |
|  * each of them.  This should only be used if the iterator is user-backed
 | |
|  * (IOBUF/UBUF).
 | |
|  *
 | |
|  * It does not get refs on the pages, but the pages must be unpinned by the
 | |
|  * caller once the transfer is complete.
 | |
|  *
 | |
|  * This is safe to be used where background IO/DMA *is* going to be modifying
 | |
|  * the buffer; using a pin rather than a ref makes forces fork() to give the
 | |
|  * child a copy of the page.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
 | |
| 					   struct page ***pages,
 | |
| 					   size_t maxsize,
 | |
| 					   unsigned int maxpages,
 | |
| 					   iov_iter_extraction_t extraction_flags,
 | |
| 					   size_t *offset0)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	unsigned int gup_flags = 0;
 | |
| 	size_t offset;
 | |
| 	int res;
 | |
| 
 | |
| 	if (i->data_source == ITER_DEST)
 | |
| 		gup_flags |= FOLL_WRITE;
 | |
| 	if (extraction_flags & ITER_ALLOW_P2PDMA)
 | |
| 		gup_flags |= FOLL_PCI_P2PDMA;
 | |
| 	if (i->nofault)
 | |
| 		gup_flags |= FOLL_NOFAULT;
 | |
| 
 | |
| 	addr = first_iovec_segment(i, &maxsize);
 | |
| 	*offset0 = offset = addr % PAGE_SIZE;
 | |
| 	addr &= PAGE_MASK;
 | |
| 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
 | |
| 	if (unlikely(res <= 0))
 | |
| 		return res;
 | |
| 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
 | |
| 	iov_iter_advance(i, maxsize);
 | |
| 	return maxsize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
 | |
|  * @i: The iterator to extract from
 | |
|  * @pages: Where to return the list of pages
 | |
|  * @maxsize: The maximum amount of iterator to extract
 | |
|  * @maxpages: The maximum size of the list of pages
 | |
|  * @extraction_flags: Flags to qualify request
 | |
|  * @offset0: Where to return the starting offset into (*@pages)[0]
 | |
|  *
 | |
|  * Extract a list of contiguous pages from the current point of the iterator,
 | |
|  * advancing the iterator.  The maximum number of pages and the maximum amount
 | |
|  * of page contents can be set.
 | |
|  *
 | |
|  * If *@pages is NULL, a page list will be allocated to the required size and
 | |
|  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
 | |
|  * that the caller allocated a page list at least @maxpages in size and this
 | |
|  * will be filled in.
 | |
|  *
 | |
|  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
 | |
|  * be allowed on the pages extracted.
 | |
|  *
 | |
|  * The iov_iter_extract_will_pin() function can be used to query how cleanup
 | |
|  * should be performed.
 | |
|  *
 | |
|  * Extra refs or pins on the pages may be obtained as follows:
 | |
|  *
 | |
|  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
 | |
|  *      added to the pages, but refs will not be taken.
 | |
|  *      iov_iter_extract_will_pin() will return true.
 | |
|  *
 | |
|  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
 | |
|  *      merely listed; no extra refs or pins are obtained.
 | |
|  *      iov_iter_extract_will_pin() will return 0.
 | |
|  *
 | |
|  * Note also:
 | |
|  *
 | |
|  *  (*) Use with ITER_DISCARD is not supported as that has no content.
 | |
|  *
 | |
|  * On success, the function sets *@pages to the new pagelist, if allocated, and
 | |
|  * sets *offset0 to the offset into the first page.
 | |
|  *
 | |
|  * It may also return -ENOMEM and -EFAULT.
 | |
|  */
 | |
| ssize_t iov_iter_extract_pages(struct iov_iter *i,
 | |
| 			       struct page ***pages,
 | |
| 			       size_t maxsize,
 | |
| 			       unsigned int maxpages,
 | |
| 			       iov_iter_extraction_t extraction_flags,
 | |
| 			       size_t *offset0)
 | |
| {
 | |
| 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
 | |
| 	if (!maxsize)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (likely(user_backed_iter(i)))
 | |
| 		return iov_iter_extract_user_pages(i, pages, maxsize,
 | |
| 						   maxpages, extraction_flags,
 | |
| 						   offset0);
 | |
| 	if (iov_iter_is_kvec(i))
 | |
| 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
 | |
| 						   maxpages, extraction_flags,
 | |
| 						   offset0);
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
 | |
| 						   maxpages, extraction_flags,
 | |
| 						   offset0);
 | |
| 	if (iov_iter_is_xarray(i))
 | |
| 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
 | |
| 						     maxpages, extraction_flags,
 | |
| 						     offset0);
 | |
| 	return -EFAULT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
 |