347 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
 | |
|  * cleaned up code to current version of sparse and added the slicing-by-8
 | |
|  * algorithm to the closely similar existing slicing-by-4 algorithm.
 | |
|  *
 | |
|  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
 | |
|  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
 | |
|  * Code was from the public domain, copyright abandoned.  Code was
 | |
|  * subsequently included in the kernel, thus was re-licensed under the
 | |
|  * GNU GPL v2.
 | |
|  *
 | |
|  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
 | |
|  * Same crc32 function was used in 5 other places in the kernel.
 | |
|  * I made one version, and deleted the others.
 | |
|  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
 | |
|  * Some xor at the end with ~0.  The generic crc32() function takes
 | |
|  * seed as an argument, and doesn't xor at the end.  Then individual
 | |
|  * users can do whatever they need.
 | |
|  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
 | |
|  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
 | |
|  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
 | |
|  *
 | |
|  * This source code is licensed under the GNU General Public License,
 | |
|  * Version 2.  See the file COPYING for more details.
 | |
|  */
 | |
| 
 | |
| /* see: Documentation/staging/crc32.rst for a description of algorithms */
 | |
| 
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/crc32poly.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/sched.h>
 | |
| #include "crc32defs.h"
 | |
| 
 | |
| #if CRC_LE_BITS > 8
 | |
| # define tole(x) ((__force u32) cpu_to_le32(x))
 | |
| #else
 | |
| # define tole(x) (x)
 | |
| #endif
 | |
| 
 | |
| #if CRC_BE_BITS > 8
 | |
| # define tobe(x) ((__force u32) cpu_to_be32(x))
 | |
| #else
 | |
| # define tobe(x) (x)
 | |
| #endif
 | |
| 
 | |
| #include "crc32table.h"
 | |
| 
 | |
| MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
 | |
| MODULE_DESCRIPTION("Various CRC32 calculations");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
 | |
| 
 | |
| /* implements slicing-by-4 or slicing-by-8 algorithm */
 | |
| static inline u32 __pure
 | |
| crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
 | |
| {
 | |
| # ifdef __LITTLE_ENDIAN
 | |
| #  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
 | |
| #  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
 | |
| 		   t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
 | |
| #  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
 | |
| 		   t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
 | |
| # else
 | |
| #  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
 | |
| #  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
 | |
| 		   t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
 | |
| #  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
 | |
| 		   t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
 | |
| # endif
 | |
| 	const u32 *b;
 | |
| 	size_t    rem_len;
 | |
| # ifdef CONFIG_X86
 | |
| 	size_t i;
 | |
| # endif
 | |
| 	const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
 | |
| # if CRC_LE_BITS != 32
 | |
| 	const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
 | |
| # endif
 | |
| 	u32 q;
 | |
| 
 | |
| 	/* Align it */
 | |
| 	if (unlikely((long)buf & 3 && len)) {
 | |
| 		do {
 | |
| 			DO_CRC(*buf++);
 | |
| 		} while ((--len) && ((long)buf)&3);
 | |
| 	}
 | |
| 
 | |
| # if CRC_LE_BITS == 32
 | |
| 	rem_len = len & 3;
 | |
| 	len = len >> 2;
 | |
| # else
 | |
| 	rem_len = len & 7;
 | |
| 	len = len >> 3;
 | |
| # endif
 | |
| 
 | |
| 	b = (const u32 *)buf;
 | |
| # ifdef CONFIG_X86
 | |
| 	--b;
 | |
| 	for (i = 0; i < len; i++) {
 | |
| # else
 | |
| 	for (--b; len; --len) {
 | |
| # endif
 | |
| 		q = crc ^ *++b; /* use pre increment for speed */
 | |
| # if CRC_LE_BITS == 32
 | |
| 		crc = DO_CRC4;
 | |
| # else
 | |
| 		crc = DO_CRC8;
 | |
| 		q = *++b;
 | |
| 		crc ^= DO_CRC4;
 | |
| # endif
 | |
| 	}
 | |
| 	len = rem_len;
 | |
| 	/* And the last few bytes */
 | |
| 	if (len) {
 | |
| 		u8 *p = (u8 *)(b + 1) - 1;
 | |
| # ifdef CONFIG_X86
 | |
| 		for (i = 0; i < len; i++)
 | |
| 			DO_CRC(*++p); /* use pre increment for speed */
 | |
| # else
 | |
| 		do {
 | |
| 			DO_CRC(*++p); /* use pre increment for speed */
 | |
| 		} while (--len);
 | |
| # endif
 | |
| 	}
 | |
| 	return crc;
 | |
| #undef DO_CRC
 | |
| #undef DO_CRC4
 | |
| #undef DO_CRC8
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
 | |
|  *			CRC32/CRC32C
 | |
|  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for other
 | |
|  *	 uses, or the previous crc32/crc32c value if computing incrementally.
 | |
|  * @p: pointer to buffer over which CRC32/CRC32C is run
 | |
|  * @len: length of buffer @p
 | |
|  * @tab: little-endian Ethernet table
 | |
|  * @polynomial: CRC32/CRC32c LE polynomial
 | |
|  */
 | |
| static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
 | |
| 					  size_t len, const u32 (*tab)[256],
 | |
| 					  u32 polynomial)
 | |
| {
 | |
| #if CRC_LE_BITS == 1
 | |
| 	int i;
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++;
 | |
| 		for (i = 0; i < 8; i++)
 | |
| 			crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
 | |
| 	}
 | |
| # elif CRC_LE_BITS == 2
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++;
 | |
| 		crc = (crc >> 2) ^ tab[0][crc & 3];
 | |
| 		crc = (crc >> 2) ^ tab[0][crc & 3];
 | |
| 		crc = (crc >> 2) ^ tab[0][crc & 3];
 | |
| 		crc = (crc >> 2) ^ tab[0][crc & 3];
 | |
| 	}
 | |
| # elif CRC_LE_BITS == 4
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++;
 | |
| 		crc = (crc >> 4) ^ tab[0][crc & 15];
 | |
| 		crc = (crc >> 4) ^ tab[0][crc & 15];
 | |
| 	}
 | |
| # elif CRC_LE_BITS == 8
 | |
| 	/* aka Sarwate algorithm */
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++;
 | |
| 		crc = (crc >> 8) ^ tab[0][crc & 255];
 | |
| 	}
 | |
| # else
 | |
| 	crc = (__force u32) __cpu_to_le32(crc);
 | |
| 	crc = crc32_body(crc, p, len, tab);
 | |
| 	crc = __le32_to_cpu((__force __le32)crc);
 | |
| #endif
 | |
| 	return crc;
 | |
| }
 | |
| 
 | |
| #if CRC_LE_BITS == 1
 | |
| u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
 | |
| {
 | |
| 	return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
 | |
| }
 | |
| u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
 | |
| {
 | |
| 	return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
 | |
| }
 | |
| #else
 | |
| u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
 | |
| {
 | |
| 	return crc32_le_generic(crc, p, len,
 | |
| 			(const u32 (*)[256])crc32table_le, CRC32_POLY_LE);
 | |
| }
 | |
| u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
 | |
| {
 | |
| 	return crc32_le_generic(crc, p, len,
 | |
| 			(const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
 | |
| }
 | |
| #endif
 | |
| EXPORT_SYMBOL(crc32_le);
 | |
| EXPORT_SYMBOL(__crc32c_le);
 | |
| 
 | |
| u32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
 | |
| u32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);
 | |
| 
 | |
| /*
 | |
|  * This multiplies the polynomials x and y modulo the given modulus.
 | |
|  * This follows the "little-endian" CRC convention that the lsbit
 | |
|  * represents the highest power of x, and the msbit represents x^0.
 | |
|  */
 | |
| static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
 | |
| {
 | |
| 	u32 product = x & 1 ? y : 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 31; i++) {
 | |
| 		product = (product >> 1) ^ (product & 1 ? modulus : 0);
 | |
| 		x >>= 1;
 | |
| 		product ^= x & 1 ? y : 0;
 | |
| 	}
 | |
| 
 | |
| 	return product;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
 | |
|  * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
 | |
|  * @len: The number of bytes. @crc is multiplied by x^(8*@len)
 | |
|  * @polynomial: The modulus used to reduce the result to 32 bits.
 | |
|  *
 | |
|  * It's possible to parallelize CRC computations by computing a CRC
 | |
|  * over separate ranges of a buffer, then summing them.
 | |
|  * This shifts the given CRC by 8*len bits (i.e. produces the same effect
 | |
|  * as appending len bytes of zero to the data), in time proportional
 | |
|  * to log(len).
 | |
|  */
 | |
| static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
 | |
| 						   u32 polynomial)
 | |
| {
 | |
| 	u32 power = polynomial;	/* CRC of x^32 */
 | |
| 	int i;
 | |
| 
 | |
| 	/* Shift up to 32 bits in the simple linear way */
 | |
| 	for (i = 0; i < 8 * (int)(len & 3); i++)
 | |
| 		crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
 | |
| 
 | |
| 	len >>= 2;
 | |
| 	if (!len)
 | |
| 		return crc;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/* "power" is x^(2^i), modulo the polynomial */
 | |
| 		if (len & 1)
 | |
| 			crc = gf2_multiply(crc, power, polynomial);
 | |
| 
 | |
| 		len >>= 1;
 | |
| 		if (!len)
 | |
| 			break;
 | |
| 
 | |
| 		/* Square power, advancing to x^(2^(i+1)) */
 | |
| 		power = gf2_multiply(power, power, polynomial);
 | |
| 	}
 | |
| 
 | |
| 	return crc;
 | |
| }
 | |
| 
 | |
| u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
 | |
| {
 | |
| 	return crc32_generic_shift(crc, len, CRC32_POLY_LE);
 | |
| }
 | |
| 
 | |
| u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
 | |
| {
 | |
| 	return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
 | |
| }
 | |
| EXPORT_SYMBOL(crc32_le_shift);
 | |
| EXPORT_SYMBOL(__crc32c_le_shift);
 | |
| 
 | |
| /**
 | |
|  * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
 | |
|  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
 | |
|  *	other uses, or the previous crc32 value if computing incrementally.
 | |
|  * @p: pointer to buffer over which CRC32 is run
 | |
|  * @len: length of buffer @p
 | |
|  * @tab: big-endian Ethernet table
 | |
|  * @polynomial: CRC32 BE polynomial
 | |
|  */
 | |
| static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
 | |
| 					  size_t len, const u32 (*tab)[256],
 | |
| 					  u32 polynomial)
 | |
| {
 | |
| #if CRC_BE_BITS == 1
 | |
| 	int i;
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++ << 24;
 | |
| 		for (i = 0; i < 8; i++)
 | |
| 			crc =
 | |
| 			    (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
 | |
| 					  0);
 | |
| 	}
 | |
| # elif CRC_BE_BITS == 2
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++ << 24;
 | |
| 		crc = (crc << 2) ^ tab[0][crc >> 30];
 | |
| 		crc = (crc << 2) ^ tab[0][crc >> 30];
 | |
| 		crc = (crc << 2) ^ tab[0][crc >> 30];
 | |
| 		crc = (crc << 2) ^ tab[0][crc >> 30];
 | |
| 	}
 | |
| # elif CRC_BE_BITS == 4
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++ << 24;
 | |
| 		crc = (crc << 4) ^ tab[0][crc >> 28];
 | |
| 		crc = (crc << 4) ^ tab[0][crc >> 28];
 | |
| 	}
 | |
| # elif CRC_BE_BITS == 8
 | |
| 	while (len--) {
 | |
| 		crc ^= *p++ << 24;
 | |
| 		crc = (crc << 8) ^ tab[0][crc >> 24];
 | |
| 	}
 | |
| # else
 | |
| 	crc = (__force u32) __cpu_to_be32(crc);
 | |
| 	crc = crc32_body(crc, p, len, tab);
 | |
| 	crc = __be32_to_cpu((__force __be32)crc);
 | |
| # endif
 | |
| 	return crc;
 | |
| }
 | |
| 
 | |
| #if CRC_BE_BITS == 1
 | |
| u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
 | |
| {
 | |
| 	return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
 | |
| }
 | |
| #else
 | |
| u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
 | |
| {
 | |
| 	return crc32_be_generic(crc, p, len,
 | |
| 			(const u32 (*)[256])crc32table_be, CRC32_POLY_BE);
 | |
| }
 | |
| #endif
 | |
| EXPORT_SYMBOL(crc32_be);
 |