631 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			631 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
 | |
|  *
 | |
|  * Uses a block device as cache for other block devices; optimized for SSDs.
 | |
|  * All allocation is done in buckets, which should match the erase block size
 | |
|  * of the device.
 | |
|  *
 | |
|  * Buckets containing cached data are kept on a heap sorted by priority;
 | |
|  * bucket priority is increased on cache hit, and periodically all the buckets
 | |
|  * on the heap have their priority scaled down. This currently is just used as
 | |
|  * an LRU but in the future should allow for more intelligent heuristics.
 | |
|  *
 | |
|  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
 | |
|  * counter. Garbage collection is used to remove stale pointers.
 | |
|  *
 | |
|  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
 | |
|  * as keys are inserted we only sort the pages that have not yet been written.
 | |
|  * When garbage collection is run, we resort the entire node.
 | |
|  *
 | |
|  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
 | |
|  */
 | |
| 
 | |
| #include "bcache.h"
 | |
| #include "btree.h"
 | |
| #include "debug.h"
 | |
| #include "extents.h"
 | |
| #include "writeback.h"
 | |
| 
 | |
| static void sort_key_next(struct btree_iter *iter,
 | |
| 			  struct btree_iter_set *i)
 | |
| {
 | |
| 	i->k = bkey_next(i->k);
 | |
| 
 | |
| 	if (i->k == i->end)
 | |
| 		*i = iter->data[--iter->used];
 | |
| }
 | |
| 
 | |
| static bool bch_key_sort_cmp(struct btree_iter_set l,
 | |
| 			     struct btree_iter_set r)
 | |
| {
 | |
| 	int64_t c = bkey_cmp(l.k, r.k);
 | |
| 
 | |
| 	return c ? c > 0 : l.k < r.k;
 | |
| }
 | |
| 
 | |
| static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		if (ptr_available(c, k, i)) {
 | |
| 			struct cache *ca = c->cache;
 | |
| 			size_t bucket = PTR_BUCKET_NR(c, k, i);
 | |
| 			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
 | |
| 
 | |
| 			if (KEY_SIZE(k) + r > c->cache->sb.bucket_size ||
 | |
| 			    bucket <  ca->sb.first_bucket ||
 | |
| 			    bucket >= ca->sb.nbuckets)
 | |
| 				return true;
 | |
| 		}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Common among btree and extent ptrs */
 | |
| 
 | |
| static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		if (ptr_available(c, k, i)) {
 | |
| 			struct cache *ca = c->cache;
 | |
| 			size_t bucket = PTR_BUCKET_NR(c, k, i);
 | |
| 			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
 | |
| 
 | |
| 			if (KEY_SIZE(k) + r > c->cache->sb.bucket_size)
 | |
| 				return "bad, length too big";
 | |
| 			if (bucket <  ca->sb.first_bucket)
 | |
| 				return "bad, short offset";
 | |
| 			if (bucket >= ca->sb.nbuckets)
 | |
| 				return "bad, offset past end of device";
 | |
| 			if (ptr_stale(c, k, i))
 | |
| 				return "stale";
 | |
| 		}
 | |
| 
 | |
| 	if (!bkey_cmp(k, &ZERO_KEY))
 | |
| 		return "bad, null key";
 | |
| 	if (!KEY_PTRS(k))
 | |
| 		return "bad, no pointers";
 | |
| 	if (!KEY_SIZE(k))
 | |
| 		return "zeroed key";
 | |
| 	return "";
 | |
| }
 | |
| 
 | |
| void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
 | |
| {
 | |
| 	unsigned int i = 0;
 | |
| 	char *out = buf, *end = buf + size;
 | |
| 
 | |
| #define p(...)	(out += scnprintf(out, end - out, __VA_ARGS__))
 | |
| 
 | |
| 	p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++) {
 | |
| 		if (i)
 | |
| 			p(", ");
 | |
| 
 | |
| 		if (PTR_DEV(k, i) == PTR_CHECK_DEV)
 | |
| 			p("check dev");
 | |
| 		else
 | |
| 			p("%llu:%llu gen %llu", PTR_DEV(k, i),
 | |
| 			  PTR_OFFSET(k, i), PTR_GEN(k, i));
 | |
| 	}
 | |
| 
 | |
| 	p("]");
 | |
| 
 | |
| 	if (KEY_DIRTY(k))
 | |
| 		p(" dirty");
 | |
| 	if (KEY_CSUM(k))
 | |
| 		p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
 | |
| #undef p
 | |
| }
 | |
| 
 | |
| static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
 | |
| {
 | |
| 	struct btree *b = container_of(keys, struct btree, keys);
 | |
| 	unsigned int j;
 | |
| 	char buf[80];
 | |
| 
 | |
| 	bch_extent_to_text(buf, sizeof(buf), k);
 | |
| 	pr_cont(" %s", buf);
 | |
| 
 | |
| 	for (j = 0; j < KEY_PTRS(k); j++) {
 | |
| 		size_t n = PTR_BUCKET_NR(b->c, k, j);
 | |
| 
 | |
| 		pr_cont(" bucket %zu", n);
 | |
| 		if (n >= b->c->cache->sb.first_bucket && n < b->c->cache->sb.nbuckets)
 | |
| 			pr_cont(" prio %i",
 | |
| 				PTR_BUCKET(b->c, k, j)->prio);
 | |
| 	}
 | |
| 
 | |
| 	pr_cont(" %s\n", bch_ptr_status(b->c, k));
 | |
| }
 | |
| 
 | |
| /* Btree ptrs */
 | |
| 
 | |
| bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
 | |
| {
 | |
| 	char buf[80];
 | |
| 
 | |
| 	if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
 | |
| 		goto bad;
 | |
| 
 | |
| 	if (__ptr_invalid(c, k))
 | |
| 		goto bad;
 | |
| 
 | |
| 	return false;
 | |
| bad:
 | |
| 	bch_extent_to_text(buf, sizeof(buf), k);
 | |
| 	cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
 | |
| {
 | |
| 	struct btree *b = container_of(bk, struct btree, keys);
 | |
| 
 | |
| 	return __bch_btree_ptr_invalid(b->c, k);
 | |
| }
 | |
| 
 | |
| static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	char buf[80];
 | |
| 	struct bucket *g;
 | |
| 
 | |
| 	if (mutex_trylock(&b->c->bucket_lock)) {
 | |
| 		for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 			if (ptr_available(b->c, k, i)) {
 | |
| 				g = PTR_BUCKET(b->c, k, i);
 | |
| 
 | |
| 				if (KEY_DIRTY(k) ||
 | |
| 				    g->prio != BTREE_PRIO ||
 | |
| 				    (b->c->gc_mark_valid &&
 | |
| 				     GC_MARK(g) != GC_MARK_METADATA))
 | |
| 					goto err;
 | |
| 			}
 | |
| 
 | |
| 		mutex_unlock(&b->c->bucket_lock);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| err:
 | |
| 	mutex_unlock(&b->c->bucket_lock);
 | |
| 	bch_extent_to_text(buf, sizeof(buf), k);
 | |
| 	btree_bug(b,
 | |
| "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
 | |
| 		  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
 | |
| 		  g->prio, g->gen, g->last_gc, GC_MARK(g));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
 | |
| {
 | |
| 	struct btree *b = container_of(bk, struct btree, keys);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!bkey_cmp(k, &ZERO_KEY) ||
 | |
| 	    !KEY_PTRS(k) ||
 | |
| 	    bch_ptr_invalid(bk, k))
 | |
| 		return true;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		if (!ptr_available(b->c, k, i) ||
 | |
| 		    ptr_stale(b->c, k, i))
 | |
| 			return true;
 | |
| 
 | |
| 	if (expensive_debug_checks(b->c) &&
 | |
| 	    btree_ptr_bad_expensive(b, k))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
 | |
| 				       struct bkey *insert,
 | |
| 				       struct btree_iter *iter,
 | |
| 				       struct bkey *replace_key)
 | |
| {
 | |
| 	struct btree *b = container_of(bk, struct btree, keys);
 | |
| 
 | |
| 	if (!KEY_OFFSET(insert))
 | |
| 		btree_current_write(b)->prio_blocked++;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| const struct btree_keys_ops bch_btree_keys_ops = {
 | |
| 	.sort_cmp	= bch_key_sort_cmp,
 | |
| 	.insert_fixup	= bch_btree_ptr_insert_fixup,
 | |
| 	.key_invalid	= bch_btree_ptr_invalid,
 | |
| 	.key_bad	= bch_btree_ptr_bad,
 | |
| 	.key_to_text	= bch_extent_to_text,
 | |
| 	.key_dump	= bch_bkey_dump,
 | |
| };
 | |
| 
 | |
| /* Extents */
 | |
| 
 | |
| /*
 | |
|  * Returns true if l > r - unless l == r, in which case returns true if l is
 | |
|  * older than r.
 | |
|  *
 | |
|  * Necessary for btree_sort_fixup() - if there are multiple keys that compare
 | |
|  * equal in different sets, we have to process them newest to oldest.
 | |
|  */
 | |
| static bool bch_extent_sort_cmp(struct btree_iter_set l,
 | |
| 				struct btree_iter_set r)
 | |
| {
 | |
| 	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
 | |
| 
 | |
| 	return c ? c > 0 : l.k < r.k;
 | |
| }
 | |
| 
 | |
| static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
 | |
| 					  struct bkey *tmp)
 | |
| {
 | |
| 	while (iter->used > 1) {
 | |
| 		struct btree_iter_set *top = iter->data, *i = top + 1;
 | |
| 
 | |
| 		if (iter->used > 2 &&
 | |
| 		    bch_extent_sort_cmp(i[0], i[1]))
 | |
| 			i++;
 | |
| 
 | |
| 		if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (!KEY_SIZE(i->k)) {
 | |
| 			sort_key_next(iter, i);
 | |
| 			heap_sift(iter, i - top, bch_extent_sort_cmp);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (top->k > i->k) {
 | |
| 			if (bkey_cmp(top->k, i->k) >= 0)
 | |
| 				sort_key_next(iter, i);
 | |
| 			else
 | |
| 				bch_cut_front(top->k, i->k);
 | |
| 
 | |
| 			heap_sift(iter, i - top, bch_extent_sort_cmp);
 | |
| 		} else {
 | |
| 			/* can't happen because of comparison func */
 | |
| 			BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
 | |
| 
 | |
| 			if (bkey_cmp(i->k, top->k) < 0) {
 | |
| 				bkey_copy(tmp, top->k);
 | |
| 
 | |
| 				bch_cut_back(&START_KEY(i->k), tmp);
 | |
| 				bch_cut_front(i->k, top->k);
 | |
| 				heap_sift(iter, 0, bch_extent_sort_cmp);
 | |
| 
 | |
| 				return tmp;
 | |
| 			} else {
 | |
| 				bch_cut_back(&START_KEY(i->k), top->k);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void bch_subtract_dirty(struct bkey *k,
 | |
| 			   struct cache_set *c,
 | |
| 			   uint64_t offset,
 | |
| 			   int sectors)
 | |
| {
 | |
| 	if (KEY_DIRTY(k))
 | |
| 		bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
 | |
| 					     offset, -sectors);
 | |
| }
 | |
| 
 | |
| static bool bch_extent_insert_fixup(struct btree_keys *b,
 | |
| 				    struct bkey *insert,
 | |
| 				    struct btree_iter *iter,
 | |
| 				    struct bkey *replace_key)
 | |
| {
 | |
| 	struct cache_set *c = container_of(b, struct btree, keys)->c;
 | |
| 
 | |
| 	uint64_t old_offset;
 | |
| 	unsigned int old_size, sectors_found = 0;
 | |
| 
 | |
| 	BUG_ON(!KEY_OFFSET(insert));
 | |
| 	BUG_ON(!KEY_SIZE(insert));
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct bkey *k = bch_btree_iter_next(iter);
 | |
| 
 | |
| 		if (!k)
 | |
| 			break;
 | |
| 
 | |
| 		if (bkey_cmp(&START_KEY(k), insert) >= 0) {
 | |
| 			if (KEY_SIZE(k))
 | |
| 				break;
 | |
| 			else
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		if (bkey_cmp(k, &START_KEY(insert)) <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		old_offset = KEY_START(k);
 | |
| 		old_size = KEY_SIZE(k);
 | |
| 
 | |
| 		/*
 | |
| 		 * We might overlap with 0 size extents; we can't skip these
 | |
| 		 * because if they're in the set we're inserting to we have to
 | |
| 		 * adjust them so they don't overlap with the key we're
 | |
| 		 * inserting. But we don't want to check them for replace
 | |
| 		 * operations.
 | |
| 		 */
 | |
| 
 | |
| 		if (replace_key && KEY_SIZE(k)) {
 | |
| 			/*
 | |
| 			 * k might have been split since we inserted/found the
 | |
| 			 * key we're replacing
 | |
| 			 */
 | |
| 			unsigned int i;
 | |
| 			uint64_t offset = KEY_START(k) -
 | |
| 				KEY_START(replace_key);
 | |
| 
 | |
| 			/* But it must be a subset of the replace key */
 | |
| 			if (KEY_START(k) < KEY_START(replace_key) ||
 | |
| 			    KEY_OFFSET(k) > KEY_OFFSET(replace_key))
 | |
| 				goto check_failed;
 | |
| 
 | |
| 			/* We didn't find a key that we were supposed to */
 | |
| 			if (KEY_START(k) > KEY_START(insert) + sectors_found)
 | |
| 				goto check_failed;
 | |
| 
 | |
| 			if (!bch_bkey_equal_header(k, replace_key))
 | |
| 				goto check_failed;
 | |
| 
 | |
| 			/* skip past gen */
 | |
| 			offset <<= 8;
 | |
| 
 | |
| 			BUG_ON(!KEY_PTRS(replace_key));
 | |
| 
 | |
| 			for (i = 0; i < KEY_PTRS(replace_key); i++)
 | |
| 				if (k->ptr[i] != replace_key->ptr[i] + offset)
 | |
| 					goto check_failed;
 | |
| 
 | |
| 			sectors_found = KEY_OFFSET(k) - KEY_START(insert);
 | |
| 		}
 | |
| 
 | |
| 		if (bkey_cmp(insert, k) < 0 &&
 | |
| 		    bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
 | |
| 			/*
 | |
| 			 * We overlapped in the middle of an existing key: that
 | |
| 			 * means we have to split the old key. But we have to do
 | |
| 			 * slightly different things depending on whether the
 | |
| 			 * old key has been written out yet.
 | |
| 			 */
 | |
| 
 | |
| 			struct bkey *top;
 | |
| 
 | |
| 			bch_subtract_dirty(k, c, KEY_START(insert),
 | |
| 				       KEY_SIZE(insert));
 | |
| 
 | |
| 			if (bkey_written(b, k)) {
 | |
| 				/*
 | |
| 				 * We insert a new key to cover the top of the
 | |
| 				 * old key, and the old key is modified in place
 | |
| 				 * to represent the bottom split.
 | |
| 				 *
 | |
| 				 * It's completely arbitrary whether the new key
 | |
| 				 * is the top or the bottom, but it has to match
 | |
| 				 * up with what btree_sort_fixup() does - it
 | |
| 				 * doesn't check for this kind of overlap, it
 | |
| 				 * depends on us inserting a new key for the top
 | |
| 				 * here.
 | |
| 				 */
 | |
| 				top = bch_bset_search(b, bset_tree_last(b),
 | |
| 						      insert);
 | |
| 				bch_bset_insert(b, top, k);
 | |
| 			} else {
 | |
| 				BKEY_PADDED(key) temp;
 | |
| 				bkey_copy(&temp.key, k);
 | |
| 				bch_bset_insert(b, k, &temp.key);
 | |
| 				top = bkey_next(k);
 | |
| 			}
 | |
| 
 | |
| 			bch_cut_front(insert, top);
 | |
| 			bch_cut_back(&START_KEY(insert), k);
 | |
| 			bch_bset_fix_invalidated_key(b, k);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (bkey_cmp(insert, k) < 0) {
 | |
| 			bch_cut_front(insert, k);
 | |
| 		} else {
 | |
| 			if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
 | |
| 				old_offset = KEY_START(insert);
 | |
| 
 | |
| 			if (bkey_written(b, k) &&
 | |
| 			    bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
 | |
| 				/*
 | |
| 				 * Completely overwrote, so we don't have to
 | |
| 				 * invalidate the binary search tree
 | |
| 				 */
 | |
| 				bch_cut_front(k, k);
 | |
| 			} else {
 | |
| 				__bch_cut_back(&START_KEY(insert), k);
 | |
| 				bch_bset_fix_invalidated_key(b, k);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
 | |
| 	}
 | |
| 
 | |
| check_failed:
 | |
| 	if (replace_key) {
 | |
| 		if (!sectors_found) {
 | |
| 			return true;
 | |
| 		} else if (sectors_found < KEY_SIZE(insert)) {
 | |
| 			SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
 | |
| 				       (KEY_SIZE(insert) - sectors_found));
 | |
| 			SET_KEY_SIZE(insert, sectors_found);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	if (KEY_DIRTY(insert))
 | |
| 		bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
 | |
| 					     KEY_START(insert),
 | |
| 					     KEY_SIZE(insert));
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
 | |
| {
 | |
| 	char buf[80];
 | |
| 
 | |
| 	if (!KEY_SIZE(k))
 | |
| 		return true;
 | |
| 
 | |
| 	if (KEY_SIZE(k) > KEY_OFFSET(k))
 | |
| 		goto bad;
 | |
| 
 | |
| 	if (__ptr_invalid(c, k))
 | |
| 		goto bad;
 | |
| 
 | |
| 	return false;
 | |
| bad:
 | |
| 	bch_extent_to_text(buf, sizeof(buf), k);
 | |
| 	cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
 | |
| {
 | |
| 	struct btree *b = container_of(bk, struct btree, keys);
 | |
| 
 | |
| 	return __bch_extent_invalid(b->c, k);
 | |
| }
 | |
| 
 | |
| static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
 | |
| 				     unsigned int ptr)
 | |
| {
 | |
| 	struct bucket *g = PTR_BUCKET(b->c, k, ptr);
 | |
| 	char buf[80];
 | |
| 
 | |
| 	if (mutex_trylock(&b->c->bucket_lock)) {
 | |
| 		if (b->c->gc_mark_valid &&
 | |
| 		    (!GC_MARK(g) ||
 | |
| 		     GC_MARK(g) == GC_MARK_METADATA ||
 | |
| 		     (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
 | |
| 			goto err;
 | |
| 
 | |
| 		if (g->prio == BTREE_PRIO)
 | |
| 			goto err;
 | |
| 
 | |
| 		mutex_unlock(&b->c->bucket_lock);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| err:
 | |
| 	mutex_unlock(&b->c->bucket_lock);
 | |
| 	bch_extent_to_text(buf, sizeof(buf), k);
 | |
| 	btree_bug(b,
 | |
| "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
 | |
| 		  buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
 | |
| 		  g->prio, g->gen, g->last_gc, GC_MARK(g));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
 | |
| {
 | |
| 	struct btree *b = container_of(bk, struct btree, keys);
 | |
| 	unsigned int i, stale;
 | |
| 	char buf[80];
 | |
| 
 | |
| 	if (!KEY_PTRS(k) ||
 | |
| 	    bch_extent_invalid(bk, k))
 | |
| 		return true;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		if (!ptr_available(b->c, k, i))
 | |
| 			return true;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++) {
 | |
| 		stale = ptr_stale(b->c, k, i);
 | |
| 
 | |
| 		if (stale && KEY_DIRTY(k)) {
 | |
| 			bch_extent_to_text(buf, sizeof(buf), k);
 | |
| 			pr_info("stale dirty pointer, stale %u, key: %s\n",
 | |
| 				stale, buf);
 | |
| 		}
 | |
| 
 | |
| 		btree_bug_on(stale > BUCKET_GC_GEN_MAX, b,
 | |
| 			     "key too stale: %i, need_gc %u",
 | |
| 			     stale, b->c->need_gc);
 | |
| 
 | |
| 		if (stale)
 | |
| 			return true;
 | |
| 
 | |
| 		if (expensive_debug_checks(b->c) &&
 | |
| 		    bch_extent_bad_expensive(b, k, i))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
 | |
| {
 | |
| 	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
 | |
| 		~((uint64_t)1 << 63);
 | |
| }
 | |
| 
 | |
| static bool bch_extent_merge(struct btree_keys *bk,
 | |
| 			     struct bkey *l,
 | |
| 			     struct bkey *r)
 | |
| {
 | |
| 	struct btree *b = container_of(bk, struct btree, keys);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (key_merging_disabled(b->c))
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(l); i++)
 | |
| 		if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
 | |
| 		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
 | |
| 			return false;
 | |
| 
 | |
| 	/* Keys with no pointers aren't restricted to one bucket and could
 | |
| 	 * overflow KEY_SIZE
 | |
| 	 */
 | |
| 	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
 | |
| 		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
 | |
| 		SET_KEY_SIZE(l, USHRT_MAX);
 | |
| 
 | |
| 		bch_cut_front(l, r);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (KEY_CSUM(l)) {
 | |
| 		if (KEY_CSUM(r))
 | |
| 			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
 | |
| 		else
 | |
| 			SET_KEY_CSUM(l, 0);
 | |
| 	}
 | |
| 
 | |
| 	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
 | |
| 	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| const struct btree_keys_ops bch_extent_keys_ops = {
 | |
| 	.sort_cmp	= bch_extent_sort_cmp,
 | |
| 	.sort_fixup	= bch_extent_sort_fixup,
 | |
| 	.insert_fixup	= bch_extent_insert_fixup,
 | |
| 	.key_invalid	= bch_extent_invalid,
 | |
| 	.key_bad	= bch_extent_bad,
 | |
| 	.key_merge	= bch_extent_merge,
 | |
| 	.key_to_text	= bch_extent_to_text,
 | |
| 	.key_dump	= bch_bkey_dump,
 | |
| 	.is_extents	= true,
 | |
| };
 |