589 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			589 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (c) 2015 Linaro Ltd.
 | |
|  * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
 | |
|  */
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_opp.h>
 | |
| #include <linux/regulator/consumer.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/thermal.h>
 | |
| 
 | |
| #define MIN_VOLT_SHIFT		(100000)
 | |
| #define MAX_VOLT_SHIFT		(200000)
 | |
| #define MAX_VOLT_LIMIT		(1150000)
 | |
| #define VOLT_TOL		(10000)
 | |
| 
 | |
| /*
 | |
|  * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
 | |
|  * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
 | |
|  * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
 | |
|  * voltage inputs need to be controlled under a hardware limitation:
 | |
|  * 100mV < Vsram - Vproc < 200mV
 | |
|  *
 | |
|  * When scaling the clock frequency of a CPU clock domain, the clock source
 | |
|  * needs to be switched to another stable PLL clock temporarily until
 | |
|  * the original PLL becomes stable at target frequency.
 | |
|  */
 | |
| struct mtk_cpu_dvfs_info {
 | |
| 	struct cpumask cpus;
 | |
| 	struct device *cpu_dev;
 | |
| 	struct regulator *proc_reg;
 | |
| 	struct regulator *sram_reg;
 | |
| 	struct clk *cpu_clk;
 | |
| 	struct clk *inter_clk;
 | |
| 	struct list_head list_head;
 | |
| 	int intermediate_voltage;
 | |
| 	bool need_voltage_tracking;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(dvfs_info_list);
 | |
| 
 | |
| static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
 | |
| {
 | |
| 	struct mtk_cpu_dvfs_info *info;
 | |
| 
 | |
| 	list_for_each_entry(info, &dvfs_info_list, list_head) {
 | |
| 		if (cpumask_test_cpu(cpu, &info->cpus))
 | |
| 			return info;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
 | |
| 					int new_vproc)
 | |
| {
 | |
| 	struct regulator *proc_reg = info->proc_reg;
 | |
| 	struct regulator *sram_reg = info->sram_reg;
 | |
| 	int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
 | |
| 
 | |
| 	old_vproc = regulator_get_voltage(proc_reg);
 | |
| 	if (old_vproc < 0) {
 | |
| 		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
 | |
| 		return old_vproc;
 | |
| 	}
 | |
| 	/* Vsram should not exceed the maximum allowed voltage of SoC. */
 | |
| 	new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
 | |
| 
 | |
| 	if (old_vproc < new_vproc) {
 | |
| 		/*
 | |
| 		 * When scaling up voltages, Vsram and Vproc scale up step
 | |
| 		 * by step. At each step, set Vsram to (Vproc + 200mV) first,
 | |
| 		 * then set Vproc to (Vsram - 100mV).
 | |
| 		 * Keep doing it until Vsram and Vproc hit target voltages.
 | |
| 		 */
 | |
| 		do {
 | |
| 			old_vsram = regulator_get_voltage(sram_reg);
 | |
| 			if (old_vsram < 0) {
 | |
| 				pr_err("%s: invalid Vsram value: %d\n",
 | |
| 				       __func__, old_vsram);
 | |
| 				return old_vsram;
 | |
| 			}
 | |
| 			old_vproc = regulator_get_voltage(proc_reg);
 | |
| 			if (old_vproc < 0) {
 | |
| 				pr_err("%s: invalid Vproc value: %d\n",
 | |
| 				       __func__, old_vproc);
 | |
| 				return old_vproc;
 | |
| 			}
 | |
| 
 | |
| 			vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
 | |
| 
 | |
| 			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
 | |
| 				vsram = MAX_VOLT_LIMIT;
 | |
| 
 | |
| 				/*
 | |
| 				 * If the target Vsram hits the maximum voltage,
 | |
| 				 * try to set the exact voltage value first.
 | |
| 				 */
 | |
| 				ret = regulator_set_voltage(sram_reg, vsram,
 | |
| 							    vsram);
 | |
| 				if (ret)
 | |
| 					ret = regulator_set_voltage(sram_reg,
 | |
| 							vsram - VOLT_TOL,
 | |
| 							vsram);
 | |
| 
 | |
| 				vproc = new_vproc;
 | |
| 			} else {
 | |
| 				ret = regulator_set_voltage(sram_reg, vsram,
 | |
| 							    vsram + VOLT_TOL);
 | |
| 
 | |
| 				vproc = vsram - MIN_VOLT_SHIFT;
 | |
| 			}
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			ret = regulator_set_voltage(proc_reg, vproc,
 | |
| 						    vproc + VOLT_TOL);
 | |
| 			if (ret) {
 | |
| 				regulator_set_voltage(sram_reg, old_vsram,
 | |
| 						      old_vsram);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		} while (vproc < new_vproc || vsram < new_vsram);
 | |
| 	} else if (old_vproc > new_vproc) {
 | |
| 		/*
 | |
| 		 * When scaling down voltages, Vsram and Vproc scale down step
 | |
| 		 * by step. At each step, set Vproc to (Vsram - 200mV) first,
 | |
| 		 * then set Vproc to (Vproc + 100mV).
 | |
| 		 * Keep doing it until Vsram and Vproc hit target voltages.
 | |
| 		 */
 | |
| 		do {
 | |
| 			old_vproc = regulator_get_voltage(proc_reg);
 | |
| 			if (old_vproc < 0) {
 | |
| 				pr_err("%s: invalid Vproc value: %d\n",
 | |
| 				       __func__, old_vproc);
 | |
| 				return old_vproc;
 | |
| 			}
 | |
| 			old_vsram = regulator_get_voltage(sram_reg);
 | |
| 			if (old_vsram < 0) {
 | |
| 				pr_err("%s: invalid Vsram value: %d\n",
 | |
| 				       __func__, old_vsram);
 | |
| 				return old_vsram;
 | |
| 			}
 | |
| 
 | |
| 			vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
 | |
| 			ret = regulator_set_voltage(proc_reg, vproc,
 | |
| 						    vproc + VOLT_TOL);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (vproc == new_vproc)
 | |
| 				vsram = new_vsram;
 | |
| 			else
 | |
| 				vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
 | |
| 
 | |
| 			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
 | |
| 				vsram = MAX_VOLT_LIMIT;
 | |
| 
 | |
| 				/*
 | |
| 				 * If the target Vsram hits the maximum voltage,
 | |
| 				 * try to set the exact voltage value first.
 | |
| 				 */
 | |
| 				ret = regulator_set_voltage(sram_reg, vsram,
 | |
| 							    vsram);
 | |
| 				if (ret)
 | |
| 					ret = regulator_set_voltage(sram_reg,
 | |
| 							vsram - VOLT_TOL,
 | |
| 							vsram);
 | |
| 			} else {
 | |
| 				ret = regulator_set_voltage(sram_reg, vsram,
 | |
| 							    vsram + VOLT_TOL);
 | |
| 			}
 | |
| 
 | |
| 			if (ret) {
 | |
| 				regulator_set_voltage(proc_reg, old_vproc,
 | |
| 						      old_vproc);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		} while (vproc > new_vproc + VOLT_TOL ||
 | |
| 			 vsram > new_vsram + VOLT_TOL);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
 | |
| {
 | |
| 	if (info->need_voltage_tracking)
 | |
| 		return mtk_cpufreq_voltage_tracking(info, vproc);
 | |
| 	else
 | |
| 		return regulator_set_voltage(info->proc_reg, vproc,
 | |
| 					     vproc + VOLT_TOL);
 | |
| }
 | |
| 
 | |
| static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
 | |
| 				  unsigned int index)
 | |
| {
 | |
| 	struct cpufreq_frequency_table *freq_table = policy->freq_table;
 | |
| 	struct clk *cpu_clk = policy->clk;
 | |
| 	struct clk *armpll = clk_get_parent(cpu_clk);
 | |
| 	struct mtk_cpu_dvfs_info *info = policy->driver_data;
 | |
| 	struct device *cpu_dev = info->cpu_dev;
 | |
| 	struct dev_pm_opp *opp;
 | |
| 	long freq_hz, old_freq_hz;
 | |
| 	int vproc, old_vproc, inter_vproc, target_vproc, ret;
 | |
| 
 | |
| 	inter_vproc = info->intermediate_voltage;
 | |
| 
 | |
| 	old_freq_hz = clk_get_rate(cpu_clk);
 | |
| 	old_vproc = regulator_get_voltage(info->proc_reg);
 | |
| 	if (old_vproc < 0) {
 | |
| 		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
 | |
| 		return old_vproc;
 | |
| 	}
 | |
| 
 | |
| 	freq_hz = freq_table[index].frequency * 1000;
 | |
| 
 | |
| 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
 | |
| 	if (IS_ERR(opp)) {
 | |
| 		pr_err("cpu%d: failed to find OPP for %ld\n",
 | |
| 		       policy->cpu, freq_hz);
 | |
| 		return PTR_ERR(opp);
 | |
| 	}
 | |
| 	vproc = dev_pm_opp_get_voltage(opp);
 | |
| 	dev_pm_opp_put(opp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new voltage or the intermediate voltage is higher than the
 | |
| 	 * current voltage, scale up voltage first.
 | |
| 	 */
 | |
| 	target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
 | |
| 	if (old_vproc < target_vproc) {
 | |
| 		ret = mtk_cpufreq_set_voltage(info, target_vproc);
 | |
| 		if (ret) {
 | |
| 			pr_err("cpu%d: failed to scale up voltage!\n",
 | |
| 			       policy->cpu);
 | |
| 			mtk_cpufreq_set_voltage(info, old_vproc);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Reparent the CPU clock to intermediate clock. */
 | |
| 	ret = clk_set_parent(cpu_clk, info->inter_clk);
 | |
| 	if (ret) {
 | |
| 		pr_err("cpu%d: failed to re-parent cpu clock!\n",
 | |
| 		       policy->cpu);
 | |
| 		mtk_cpufreq_set_voltage(info, old_vproc);
 | |
| 		WARN_ON(1);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the original PLL to target rate. */
 | |
| 	ret = clk_set_rate(armpll, freq_hz);
 | |
| 	if (ret) {
 | |
| 		pr_err("cpu%d: failed to scale cpu clock rate!\n",
 | |
| 		       policy->cpu);
 | |
| 		clk_set_parent(cpu_clk, armpll);
 | |
| 		mtk_cpufreq_set_voltage(info, old_vproc);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Set parent of CPU clock back to the original PLL. */
 | |
| 	ret = clk_set_parent(cpu_clk, armpll);
 | |
| 	if (ret) {
 | |
| 		pr_err("cpu%d: failed to re-parent cpu clock!\n",
 | |
| 		       policy->cpu);
 | |
| 		mtk_cpufreq_set_voltage(info, inter_vproc);
 | |
| 		WARN_ON(1);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new voltage is lower than the intermediate voltage or the
 | |
| 	 * original voltage, scale down to the new voltage.
 | |
| 	 */
 | |
| 	if (vproc < inter_vproc || vproc < old_vproc) {
 | |
| 		ret = mtk_cpufreq_set_voltage(info, vproc);
 | |
| 		if (ret) {
 | |
| 			pr_err("cpu%d: failed to scale down voltage!\n",
 | |
| 			       policy->cpu);
 | |
| 			clk_set_parent(cpu_clk, info->inter_clk);
 | |
| 			clk_set_rate(armpll, old_freq_hz);
 | |
| 			clk_set_parent(cpu_clk, armpll);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define DYNAMIC_POWER "dynamic-power-coefficient"
 | |
| 
 | |
| static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
 | |
| {
 | |
| 	struct device *cpu_dev;
 | |
| 	struct regulator *proc_reg = ERR_PTR(-ENODEV);
 | |
| 	struct regulator *sram_reg = ERR_PTR(-ENODEV);
 | |
| 	struct clk *cpu_clk = ERR_PTR(-ENODEV);
 | |
| 	struct clk *inter_clk = ERR_PTR(-ENODEV);
 | |
| 	struct dev_pm_opp *opp;
 | |
| 	unsigned long rate;
 | |
| 	int ret;
 | |
| 
 | |
| 	cpu_dev = get_cpu_device(cpu);
 | |
| 	if (!cpu_dev) {
 | |
| 		pr_err("failed to get cpu%d device\n", cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	cpu_clk = clk_get(cpu_dev, "cpu");
 | |
| 	if (IS_ERR(cpu_clk)) {
 | |
| 		if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
 | |
| 			pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
 | |
| 		else
 | |
| 			pr_err("failed to get cpu clk for cpu%d\n", cpu);
 | |
| 
 | |
| 		ret = PTR_ERR(cpu_clk);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	inter_clk = clk_get(cpu_dev, "intermediate");
 | |
| 	if (IS_ERR(inter_clk)) {
 | |
| 		if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
 | |
| 			pr_warn("intermediate clk for cpu%d not ready, retry.\n",
 | |
| 				cpu);
 | |
| 		else
 | |
| 			pr_err("failed to get intermediate clk for cpu%d\n",
 | |
| 			       cpu);
 | |
| 
 | |
| 		ret = PTR_ERR(inter_clk);
 | |
| 		goto out_free_resources;
 | |
| 	}
 | |
| 
 | |
| 	proc_reg = regulator_get_optional(cpu_dev, "proc");
 | |
| 	if (IS_ERR(proc_reg)) {
 | |
| 		if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
 | |
| 			pr_warn("proc regulator for cpu%d not ready, retry.\n",
 | |
| 				cpu);
 | |
| 		else
 | |
| 			pr_err("failed to get proc regulator for cpu%d\n",
 | |
| 			       cpu);
 | |
| 
 | |
| 		ret = PTR_ERR(proc_reg);
 | |
| 		goto out_free_resources;
 | |
| 	}
 | |
| 
 | |
| 	/* Both presence and absence of sram regulator are valid cases. */
 | |
| 	sram_reg = regulator_get_exclusive(cpu_dev, "sram");
 | |
| 
 | |
| 	/* Get OPP-sharing information from "operating-points-v2" bindings */
 | |
| 	ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
 | |
| 	if (ret) {
 | |
| 		pr_err("failed to get OPP-sharing information for cpu%d\n",
 | |
| 		       cpu);
 | |
| 		goto out_free_resources;
 | |
| 	}
 | |
| 
 | |
| 	ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
 | |
| 	if (ret) {
 | |
| 		pr_warn("no OPP table for cpu%d\n", cpu);
 | |
| 		goto out_free_resources;
 | |
| 	}
 | |
| 
 | |
| 	/* Search a safe voltage for intermediate frequency. */
 | |
| 	rate = clk_get_rate(inter_clk);
 | |
| 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
 | |
| 	if (IS_ERR(opp)) {
 | |
| 		pr_err("failed to get intermediate opp for cpu%d\n", cpu);
 | |
| 		ret = PTR_ERR(opp);
 | |
| 		goto out_free_opp_table;
 | |
| 	}
 | |
| 	info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
 | |
| 	dev_pm_opp_put(opp);
 | |
| 
 | |
| 	info->cpu_dev = cpu_dev;
 | |
| 	info->proc_reg = proc_reg;
 | |
| 	info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
 | |
| 	info->cpu_clk = cpu_clk;
 | |
| 	info->inter_clk = inter_clk;
 | |
| 
 | |
| 	/*
 | |
| 	 * If SRAM regulator is present, software "voltage tracking" is needed
 | |
| 	 * for this CPU power domain.
 | |
| 	 */
 | |
| 	info->need_voltage_tracking = !IS_ERR(sram_reg);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_opp_table:
 | |
| 	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
 | |
| 
 | |
| out_free_resources:
 | |
| 	if (!IS_ERR(proc_reg))
 | |
| 		regulator_put(proc_reg);
 | |
| 	if (!IS_ERR(sram_reg))
 | |
| 		regulator_put(sram_reg);
 | |
| 	if (!IS_ERR(cpu_clk))
 | |
| 		clk_put(cpu_clk);
 | |
| 	if (!IS_ERR(inter_clk))
 | |
| 		clk_put(inter_clk);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
 | |
| {
 | |
| 	if (!IS_ERR(info->proc_reg))
 | |
| 		regulator_put(info->proc_reg);
 | |
| 	if (!IS_ERR(info->sram_reg))
 | |
| 		regulator_put(info->sram_reg);
 | |
| 	if (!IS_ERR(info->cpu_clk))
 | |
| 		clk_put(info->cpu_clk);
 | |
| 	if (!IS_ERR(info->inter_clk))
 | |
| 		clk_put(info->inter_clk);
 | |
| 
 | |
| 	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
 | |
| }
 | |
| 
 | |
| static int mtk_cpufreq_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct mtk_cpu_dvfs_info *info;
 | |
| 	struct cpufreq_frequency_table *freq_table;
 | |
| 	int ret;
 | |
| 
 | |
| 	info = mtk_cpu_dvfs_info_lookup(policy->cpu);
 | |
| 	if (!info) {
 | |
| 		pr_err("dvfs info for cpu%d is not initialized.\n",
 | |
| 		       policy->cpu);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
 | |
| 	if (ret) {
 | |
| 		pr_err("failed to init cpufreq table for cpu%d: %d\n",
 | |
| 		       policy->cpu, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cpumask_copy(policy->cpus, &info->cpus);
 | |
| 	policy->freq_table = freq_table;
 | |
| 	policy->driver_data = info;
 | |
| 	policy->clk = info->cpu_clk;
 | |
| 
 | |
| 	dev_pm_opp_of_register_em(info->cpu_dev, policy->cpus);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct mtk_cpu_dvfs_info *info = policy->driver_data;
 | |
| 
 | |
| 	dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cpufreq_driver mtk_cpufreq_driver = {
 | |
| 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
 | |
| 		 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
 | |
| 		 CPUFREQ_IS_COOLING_DEV,
 | |
| 	.verify = cpufreq_generic_frequency_table_verify,
 | |
| 	.target_index = mtk_cpufreq_set_target,
 | |
| 	.get = cpufreq_generic_get,
 | |
| 	.init = mtk_cpufreq_init,
 | |
| 	.exit = mtk_cpufreq_exit,
 | |
| 	.name = "mtk-cpufreq",
 | |
| 	.attr = cpufreq_generic_attr,
 | |
| };
 | |
| 
 | |
| static int mtk_cpufreq_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct mtk_cpu_dvfs_info *info, *tmp;
 | |
| 	int cpu, ret;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		info = mtk_cpu_dvfs_info_lookup(cpu);
 | |
| 		if (info)
 | |
| 			continue;
 | |
| 
 | |
| 		info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
 | |
| 		if (!info) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto release_dvfs_info_list;
 | |
| 		}
 | |
| 
 | |
| 		ret = mtk_cpu_dvfs_info_init(info, cpu);
 | |
| 		if (ret) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"failed to initialize dvfs info for cpu%d\n",
 | |
| 				cpu);
 | |
| 			goto release_dvfs_info_list;
 | |
| 		}
 | |
| 
 | |
| 		list_add(&info->list_head, &dvfs_info_list);
 | |
| 	}
 | |
| 
 | |
| 	ret = cpufreq_register_driver(&mtk_cpufreq_driver);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
 | |
| 		goto release_dvfs_info_list;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| release_dvfs_info_list:
 | |
| 	list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
 | |
| 		mtk_cpu_dvfs_info_release(info);
 | |
| 		list_del(&info->list_head);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct platform_driver mtk_cpufreq_platdrv = {
 | |
| 	.driver = {
 | |
| 		.name	= "mtk-cpufreq",
 | |
| 	},
 | |
| 	.probe		= mtk_cpufreq_probe,
 | |
| };
 | |
| 
 | |
| /* List of machines supported by this driver */
 | |
| static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
 | |
| 	{ .compatible = "mediatek,mt2701", },
 | |
| 	{ .compatible = "mediatek,mt2712", },
 | |
| 	{ .compatible = "mediatek,mt7622", },
 | |
| 	{ .compatible = "mediatek,mt7623", },
 | |
| 	{ .compatible = "mediatek,mt8167", },
 | |
| 	{ .compatible = "mediatek,mt817x", },
 | |
| 	{ .compatible = "mediatek,mt8173", },
 | |
| 	{ .compatible = "mediatek,mt8176", },
 | |
| 	{ .compatible = "mediatek,mt8183", },
 | |
| 	{ .compatible = "mediatek,mt8365", },
 | |
| 	{ .compatible = "mediatek,mt8516", },
 | |
| 
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
 | |
| 
 | |
| static int __init mtk_cpufreq_driver_init(void)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 	const struct of_device_id *match;
 | |
| 	struct platform_device *pdev;
 | |
| 	int err;
 | |
| 
 | |
| 	np = of_find_node_by_path("/");
 | |
| 	if (!np)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	match = of_match_node(mtk_cpufreq_machines, np);
 | |
| 	of_node_put(np);
 | |
| 	if (!match) {
 | |
| 		pr_debug("Machine is not compatible with mtk-cpufreq\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	err = platform_driver_register(&mtk_cpufreq_platdrv);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since there's no place to hold device registration code and no
 | |
| 	 * device tree based way to match cpufreq driver yet, both the driver
 | |
| 	 * and the device registration codes are put here to handle defer
 | |
| 	 * probing.
 | |
| 	 */
 | |
| 	pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
 | |
| 	if (IS_ERR(pdev)) {
 | |
| 		pr_err("failed to register mtk-cpufreq platform device\n");
 | |
| 		platform_driver_unregister(&mtk_cpufreq_platdrv);
 | |
| 		return PTR_ERR(pdev);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| device_initcall(mtk_cpufreq_driver_init);
 | |
| 
 | |
| MODULE_DESCRIPTION("MediaTek CPUFreq driver");
 | |
| MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
 | |
| MODULE_LICENSE("GPL v2");
 |