214 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			214 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*---------------------------------------------------------------------------+
 | 
						|
 |  poly_tan.c                                                               |
 | 
						|
 |                                                                           |
 | 
						|
 | Compute the tan of a FPU_REG, using a polynomial approximation.           |
 | 
						|
 |                                                                           |
 | 
						|
 | Copyright (C) 1992,1993,1994,1997,1999                                    |
 | 
						|
 |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      |
 | 
						|
 |                       Australia.  E-mail   billm@melbpc.org.au            |
 | 
						|
 |                                                                           |
 | 
						|
 |                                                                           |
 | 
						|
 +---------------------------------------------------------------------------*/
 | 
						|
 | 
						|
#include "exception.h"
 | 
						|
#include "reg_constant.h"
 | 
						|
#include "fpu_emu.h"
 | 
						|
#include "fpu_system.h"
 | 
						|
#include "control_w.h"
 | 
						|
#include "poly.h"
 | 
						|
 | 
						|
#define	HiPOWERop	3	/* odd poly, positive terms */
 | 
						|
static const unsigned long long oddplterm[HiPOWERop] = {
 | 
						|
	0x0000000000000000LL,
 | 
						|
	0x0051a1cf08fca228LL,
 | 
						|
	0x0000000071284ff7LL
 | 
						|
};
 | 
						|
 | 
						|
#define	HiPOWERon	2	/* odd poly, negative terms */
 | 
						|
static const unsigned long long oddnegterm[HiPOWERon] = {
 | 
						|
	0x1291a9a184244e80LL,
 | 
						|
	0x0000583245819c21LL
 | 
						|
};
 | 
						|
 | 
						|
#define	HiPOWERep	2	/* even poly, positive terms */
 | 
						|
static const unsigned long long evenplterm[HiPOWERep] = {
 | 
						|
	0x0e848884b539e888LL,
 | 
						|
	0x00003c7f18b887daLL
 | 
						|
};
 | 
						|
 | 
						|
#define	HiPOWERen	2	/* even poly, negative terms */
 | 
						|
static const unsigned long long evennegterm[HiPOWERen] = {
 | 
						|
	0xf1f0200fd51569ccLL,
 | 
						|
	0x003afb46105c4432LL
 | 
						|
};
 | 
						|
 | 
						|
static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
 | 
						|
 | 
						|
/*--- poly_tan() ------------------------------------------------------------+
 | 
						|
 |                                                                           |
 | 
						|
 +---------------------------------------------------------------------------*/
 | 
						|
void poly_tan(FPU_REG *st0_ptr)
 | 
						|
{
 | 
						|
	long int exponent;
 | 
						|
	int invert;
 | 
						|
	Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
 | 
						|
	    argSignif, fix_up;
 | 
						|
	unsigned long adj;
 | 
						|
 | 
						|
	exponent = exponent(st0_ptr);
 | 
						|
 | 
						|
#ifdef PARANOID
 | 
						|
	if (signnegative(st0_ptr)) {	/* Can't hack a number < 0.0 */
 | 
						|
		arith_invalid(0);
 | 
						|
		return;
 | 
						|
	}			/* Need a positive number */
 | 
						|
#endif /* PARANOID */
 | 
						|
 | 
						|
	/* Split the problem into two domains, smaller and larger than pi/4 */
 | 
						|
	if ((exponent == 0)
 | 
						|
	    || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2))) {
 | 
						|
		/* The argument is greater than (approx) pi/4 */
 | 
						|
		invert = 1;
 | 
						|
		accum.lsw = 0;
 | 
						|
		XSIG_LL(accum) = significand(st0_ptr);
 | 
						|
 | 
						|
		if (exponent == 0) {
 | 
						|
			/* The argument is >= 1.0 */
 | 
						|
			/* Put the binary point at the left. */
 | 
						|
			XSIG_LL(accum) <<= 1;
 | 
						|
		}
 | 
						|
		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
 | 
						|
		XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
 | 
						|
		/* This is a special case which arises due to rounding. */
 | 
						|
		if (XSIG_LL(accum) == 0xffffffffffffffffLL) {
 | 
						|
			FPU_settag0(TAG_Valid);
 | 
						|
			significand(st0_ptr) = 0x8a51e04daabda360LL;
 | 
						|
			setexponent16(st0_ptr,
 | 
						|
				      (0x41 + EXTENDED_Ebias) | SIGN_Negative);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		argSignif.lsw = accum.lsw;
 | 
						|
		XSIG_LL(argSignif) = XSIG_LL(accum);
 | 
						|
		exponent = -1 + norm_Xsig(&argSignif);
 | 
						|
	} else {
 | 
						|
		invert = 0;
 | 
						|
		argSignif.lsw = 0;
 | 
						|
		XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
 | 
						|
 | 
						|
		if (exponent < -1) {
 | 
						|
			/* shift the argument right by the required places */
 | 
						|
			if (FPU_shrx(&XSIG_LL(accum), -1 - exponent) >=
 | 
						|
			    0x80000000U)
 | 
						|
				XSIG_LL(accum)++;	/* round up */
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	XSIG_LL(argSq) = XSIG_LL(accum);
 | 
						|
	argSq.lsw = accum.lsw;
 | 
						|
	mul_Xsig_Xsig(&argSq, &argSq);
 | 
						|
	XSIG_LL(argSqSq) = XSIG_LL(argSq);
 | 
						|
	argSqSq.lsw = argSq.lsw;
 | 
						|
	mul_Xsig_Xsig(&argSqSq, &argSqSq);
 | 
						|
 | 
						|
	/* Compute the negative terms for the numerator polynomial */
 | 
						|
	accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
 | 
						|
	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm,
 | 
						|
			HiPOWERon - 1);
 | 
						|
	mul_Xsig_Xsig(&accumulatoro, &argSq);
 | 
						|
	negate_Xsig(&accumulatoro);
 | 
						|
	/* Add the positive terms */
 | 
						|
	polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm,
 | 
						|
			HiPOWERop - 1);
 | 
						|
 | 
						|
	/* Compute the positive terms for the denominator polynomial */
 | 
						|
	accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
 | 
						|
	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm,
 | 
						|
			HiPOWERep - 1);
 | 
						|
	mul_Xsig_Xsig(&accumulatore, &argSq);
 | 
						|
	negate_Xsig(&accumulatore);
 | 
						|
	/* Add the negative terms */
 | 
						|
	polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm,
 | 
						|
			HiPOWERen - 1);
 | 
						|
	/* Multiply by arg^2 */
 | 
						|
	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
 | 
						|
	mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
 | 
						|
	/* de-normalize and divide by 2 */
 | 
						|
	shr_Xsig(&accumulatore, -2 * (1 + exponent) + 1);
 | 
						|
	negate_Xsig(&accumulatore);	/* This does 1 - accumulator */
 | 
						|
 | 
						|
	/* Now find the ratio. */
 | 
						|
	if (accumulatore.msw == 0) {
 | 
						|
		/* accumulatoro must contain 1.0 here, (actually, 0) but it
 | 
						|
		   really doesn't matter what value we use because it will
 | 
						|
		   have negligible effect in later calculations
 | 
						|
		 */
 | 
						|
		XSIG_LL(accum) = 0x8000000000000000LL;
 | 
						|
		accum.lsw = 0;
 | 
						|
	} else {
 | 
						|
		div_Xsig(&accumulatoro, &accumulatore, &accum);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Multiply by 1/3 * arg^3 */
 | 
						|
	mul64_Xsig(&accum, &XSIG_LL(argSignif));
 | 
						|
	mul64_Xsig(&accum, &XSIG_LL(argSignif));
 | 
						|
	mul64_Xsig(&accum, &XSIG_LL(argSignif));
 | 
						|
	mul64_Xsig(&accum, &twothirds);
 | 
						|
	shr_Xsig(&accum, -2 * (exponent + 1));
 | 
						|
 | 
						|
	/* tan(arg) = arg + accum */
 | 
						|
	add_two_Xsig(&accum, &argSignif, &exponent);
 | 
						|
 | 
						|
	if (invert) {
 | 
						|
		/* We now have the value of tan(pi_2 - arg) where pi_2 is an
 | 
						|
		   approximation for pi/2
 | 
						|
		 */
 | 
						|
		/* The next step is to fix the answer to compensate for the
 | 
						|
		   error due to the approximation used for pi/2
 | 
						|
		 */
 | 
						|
 | 
						|
		/* This is (approx) delta, the error in our approx for pi/2
 | 
						|
		   (see above). It has an exponent of -65
 | 
						|
		 */
 | 
						|
		XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
 | 
						|
		fix_up.lsw = 0;
 | 
						|
 | 
						|
		if (exponent == 0)
 | 
						|
			adj = 0xffffffff;	/* We want approx 1.0 here, but
 | 
						|
						   this is close enough. */
 | 
						|
		else if (exponent > -30) {
 | 
						|
			adj = accum.msw >> -(exponent + 1);	/* tan */
 | 
						|
			adj = mul_32_32(adj, adj);	/* tan^2 */
 | 
						|
		} else
 | 
						|
			adj = 0;
 | 
						|
		adj = mul_32_32(0x898cc517, adj);	/* delta * tan^2 */
 | 
						|
 | 
						|
		fix_up.msw += adj;
 | 
						|
		if (!(fix_up.msw & 0x80000000)) {	/* did fix_up overflow ? */
 | 
						|
			/* Yes, we need to add an msb */
 | 
						|
			shr_Xsig(&fix_up, 1);
 | 
						|
			fix_up.msw |= 0x80000000;
 | 
						|
			shr_Xsig(&fix_up, 64 + exponent);
 | 
						|
		} else
 | 
						|
			shr_Xsig(&fix_up, 65 + exponent);
 | 
						|
 | 
						|
		add_two_Xsig(&accum, &fix_up, &exponent);
 | 
						|
 | 
						|
		/* accum now contains tan(pi/2 - arg).
 | 
						|
		   Use tan(arg) = 1.0 / tan(pi/2 - arg)
 | 
						|
		 */
 | 
						|
		accumulatoro.lsw = accumulatoro.midw = 0;
 | 
						|
		accumulatoro.msw = 0x80000000;
 | 
						|
		div_Xsig(&accumulatoro, &accum, &accum);
 | 
						|
		exponent = -exponent - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Transfer the result */
 | 
						|
	round_Xsig(&accum);
 | 
						|
	FPU_settag0(TAG_Valid);
 | 
						|
	significand(st0_ptr) = XSIG_LL(accum);
 | 
						|
	setexponent16(st0_ptr, exponent + EXTENDED_Ebias);	/* Result is positive. */
 | 
						|
 | 
						|
}
 |