709 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			709 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Simple PWM based backlight control, board code has to setup
 | |
|  * 1) pin configuration so PWM waveforms can output
 | |
|  * 2) platform_data being correctly configured
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/gpio/consumer.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/backlight.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/pwm.h>
 | |
| #include <linux/pwm_backlight.h>
 | |
| #include <linux/regulator/consumer.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| struct pwm_bl_data {
 | |
| 	struct pwm_device	*pwm;
 | |
| 	struct device		*dev;
 | |
| 	unsigned int		lth_brightness;
 | |
| 	unsigned int		*levels;
 | |
| 	bool			enabled;
 | |
| 	struct regulator	*power_supply;
 | |
| 	struct gpio_desc	*enable_gpio;
 | |
| 	unsigned int		scale;
 | |
| 	unsigned int		post_pwm_on_delay;
 | |
| 	unsigned int		pwm_off_delay;
 | |
| 	int			(*notify)(struct device *,
 | |
| 					  int brightness);
 | |
| 	void			(*notify_after)(struct device *,
 | |
| 					int brightness);
 | |
| 	void			(*exit)(struct device *);
 | |
| };
 | |
| 
 | |
| static void pwm_backlight_power_on(struct pwm_bl_data *pb)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (pb->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (pb->power_supply) {
 | |
| 		err = regulator_enable(pb->power_supply);
 | |
| 		if (err < 0)
 | |
| 			dev_err(pb->dev, "failed to enable power supply\n");
 | |
| 	}
 | |
| 
 | |
| 	if (pb->post_pwm_on_delay)
 | |
| 		msleep(pb->post_pwm_on_delay);
 | |
| 
 | |
| 	gpiod_set_value_cansleep(pb->enable_gpio, 1);
 | |
| 
 | |
| 	pb->enabled = true;
 | |
| }
 | |
| 
 | |
| static void pwm_backlight_power_off(struct pwm_bl_data *pb)
 | |
| {
 | |
| 	if (!pb->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	gpiod_set_value_cansleep(pb->enable_gpio, 0);
 | |
| 
 | |
| 	if (pb->pwm_off_delay)
 | |
| 		msleep(pb->pwm_off_delay);
 | |
| 
 | |
| 	if (pb->power_supply)
 | |
| 		regulator_disable(pb->power_supply);
 | |
| 	pb->enabled = false;
 | |
| }
 | |
| 
 | |
| static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness, struct pwm_state *state)
 | |
| {
 | |
| 	unsigned int lth = pb->lth_brightness;
 | |
| 	u64 duty_cycle;
 | |
| 
 | |
| 	if (pb->levels)
 | |
| 		duty_cycle = pb->levels[brightness];
 | |
| 	else
 | |
| 		duty_cycle = brightness;
 | |
| 
 | |
| 	duty_cycle *= state->period - lth;
 | |
| 	do_div(duty_cycle, pb->scale);
 | |
| 
 | |
| 	return duty_cycle + lth;
 | |
| }
 | |
| 
 | |
| static int pwm_backlight_update_status(struct backlight_device *bl)
 | |
| {
 | |
| 	struct pwm_bl_data *pb = bl_get_data(bl);
 | |
| 	int brightness = backlight_get_brightness(bl);
 | |
| 	struct pwm_state state;
 | |
| 
 | |
| 	if (pb->notify)
 | |
| 		brightness = pb->notify(pb->dev, brightness);
 | |
| 
 | |
| 	if (brightness > 0) {
 | |
| 		pwm_get_state(pb->pwm, &state);
 | |
| 		state.duty_cycle = compute_duty_cycle(pb, brightness, &state);
 | |
| 		state.enabled = true;
 | |
| 		pwm_apply_might_sleep(pb->pwm, &state);
 | |
| 
 | |
| 		pwm_backlight_power_on(pb);
 | |
| 	} else {
 | |
| 		pwm_backlight_power_off(pb);
 | |
| 
 | |
| 		pwm_get_state(pb->pwm, &state);
 | |
| 		state.duty_cycle = 0;
 | |
| 		/*
 | |
| 		 * We cannot assume a disabled PWM to drive its output to the
 | |
| 		 * inactive state. If we have an enable GPIO and/or a regulator
 | |
| 		 * we assume that this isn't relevant and we can disable the PWM
 | |
| 		 * to save power. If however there is neither an enable GPIO nor
 | |
| 		 * a regulator keep the PWM on be sure to get a constant
 | |
| 		 * inactive output.
 | |
| 		 */
 | |
| 		state.enabled = !pb->power_supply && !pb->enable_gpio;
 | |
| 		pwm_apply_might_sleep(pb->pwm, &state);
 | |
| 	}
 | |
| 
 | |
| 	if (pb->notify_after)
 | |
| 		pb->notify_after(pb->dev, brightness);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct backlight_ops pwm_backlight_ops = {
 | |
| 	.update_status	= pwm_backlight_update_status,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| #define PWM_LUMINANCE_SHIFT	16
 | |
| #define PWM_LUMINANCE_SCALE	(1 << PWM_LUMINANCE_SHIFT) /* luminance scale */
 | |
| 
 | |
| /*
 | |
|  * CIE lightness to PWM conversion.
 | |
|  *
 | |
|  * The CIE 1931 lightness formula is what actually describes how we perceive
 | |
|  * light:
 | |
|  *          Y = (L* / 903.3)           if L* ≤ 8
 | |
|  *          Y = ((L* + 16) / 116)^3    if L* > 8
 | |
|  *
 | |
|  * Where Y is the luminance, the amount of light coming out of the screen, and
 | |
|  * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
 | |
|  * perceives the screen to be, and is a number between 0 and 100.
 | |
|  *
 | |
|  * The following function does the fixed point maths needed to implement the
 | |
|  * above formula.
 | |
|  */
 | |
| static u64 cie1931(unsigned int lightness)
 | |
| {
 | |
| 	u64 retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * @lightness is given as a number between 0 and 1, expressed
 | |
| 	 * as a fixed-point number in scale
 | |
| 	 * PWM_LUMINANCE_SCALE. Convert to a percentage, still
 | |
| 	 * expressed as a fixed-point number, so the above formulas
 | |
| 	 * can be applied.
 | |
| 	 */
 | |
| 	lightness *= 100;
 | |
| 	if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
 | |
| 		retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
 | |
| 	} else {
 | |
| 		retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
 | |
| 		retval *= retval * retval;
 | |
| 		retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
 | |
| 		retval >>= 2*PWM_LUMINANCE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a default correction table for PWM values to create linear brightness
 | |
|  * for LED based backlights using the CIE1931 algorithm.
 | |
|  */
 | |
| static
 | |
| int pwm_backlight_brightness_default(struct device *dev,
 | |
| 				     struct platform_pwm_backlight_data *data,
 | |
| 				     unsigned int period)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	u64 retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once we have 4096 levels there's little point going much higher...
 | |
| 	 * neither interactive sliders nor animation benefits from having
 | |
| 	 * more values in the table.
 | |
| 	 */
 | |
| 	data->max_brightness =
 | |
| 		min((int)DIV_ROUND_UP(period, fls(period)), 4096);
 | |
| 
 | |
| 	data->levels = devm_kcalloc(dev, data->max_brightness,
 | |
| 				    sizeof(*data->levels), GFP_KERNEL);
 | |
| 	if (!data->levels)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Fill the table using the cie1931 algorithm */
 | |
| 	for (i = 0; i < data->max_brightness; i++) {
 | |
| 		retval = cie1931((i * PWM_LUMINANCE_SCALE) /
 | |
| 				 data->max_brightness) * period;
 | |
| 		retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
 | |
| 		if (retval > UINT_MAX)
 | |
| 			return -EINVAL;
 | |
| 		data->levels[i] = (unsigned int)retval;
 | |
| 	}
 | |
| 
 | |
| 	data->dft_brightness = data->max_brightness / 2;
 | |
| 	data->max_brightness--;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pwm_backlight_parse_dt(struct device *dev,
 | |
| 				  struct platform_pwm_backlight_data *data)
 | |
| {
 | |
| 	struct device_node *node = dev->of_node;
 | |
| 	unsigned int num_levels;
 | |
| 	unsigned int num_steps = 0;
 | |
| 	struct property *prop;
 | |
| 	unsigned int *table;
 | |
| 	int length;
 | |
| 	u32 value;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!node)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	memset(data, 0, sizeof(*data));
 | |
| 
 | |
| 	/*
 | |
| 	 * These values are optional and set as 0 by default, the out values
 | |
| 	 * are modified only if a valid u32 value can be decoded.
 | |
| 	 */
 | |
| 	of_property_read_u32(node, "post-pwm-on-delay-ms",
 | |
| 			     &data->post_pwm_on_delay);
 | |
| 	of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the number of brightness levels, if this property is not
 | |
| 	 * set a default table of brightness levels will be used.
 | |
| 	 */
 | |
| 	prop = of_find_property(node, "brightness-levels", &length);
 | |
| 	if (!prop)
 | |
| 		return 0;
 | |
| 
 | |
| 	num_levels = length / sizeof(u32);
 | |
| 
 | |
| 	/* read brightness levels from DT property */
 | |
| 	if (num_levels > 0) {
 | |
| 		data->levels = devm_kcalloc(dev, num_levels,
 | |
| 					    sizeof(*data->levels), GFP_KERNEL);
 | |
| 		if (!data->levels)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		ret = of_property_read_u32_array(node, "brightness-levels",
 | |
| 						 data->levels,
 | |
| 						 num_levels);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = of_property_read_u32(node, "default-brightness-level",
 | |
| 					   &value);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		data->dft_brightness = value;
 | |
| 
 | |
| 		/*
 | |
| 		 * This property is optional, if is set enables linear
 | |
| 		 * interpolation between each of the values of brightness levels
 | |
| 		 * and creates a new pre-computed table.
 | |
| 		 */
 | |
| 		of_property_read_u32(node, "num-interpolated-steps",
 | |
| 				     &num_steps);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that there is at least two entries in the
 | |
| 		 * brightness-levels table, otherwise we can't interpolate
 | |
| 		 * between two points.
 | |
| 		 */
 | |
| 		if (num_steps) {
 | |
| 			unsigned int num_input_levels = num_levels;
 | |
| 			unsigned int i;
 | |
| 			u32 x1, x2, x, dx;
 | |
| 			u32 y1, y2;
 | |
| 			s64 dy;
 | |
| 
 | |
| 			if (num_input_levels < 2) {
 | |
| 				dev_err(dev, "can't interpolate\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Recalculate the number of brightness levels, now
 | |
| 			 * taking in consideration the number of interpolated
 | |
| 			 * steps between two levels.
 | |
| 			 */
 | |
| 			num_levels = (num_input_levels - 1) * num_steps + 1;
 | |
| 			dev_dbg(dev, "new number of brightness levels: %d\n",
 | |
| 				num_levels);
 | |
| 
 | |
| 			/*
 | |
| 			 * Create a new table of brightness levels with all the
 | |
| 			 * interpolated steps.
 | |
| 			 */
 | |
| 			table = devm_kcalloc(dev, num_levels, sizeof(*table),
 | |
| 					     GFP_KERNEL);
 | |
| 			if (!table)
 | |
| 				return -ENOMEM;
 | |
| 			/*
 | |
| 			 * Fill the interpolated table[x] = y
 | |
| 			 * by draw lines between each (x1, y1) to (x2, y2).
 | |
| 			 */
 | |
| 			dx = num_steps;
 | |
| 			for (i = 0; i < num_input_levels - 1; i++) {
 | |
| 				x1 = i * dx;
 | |
| 				x2 = x1 + dx;
 | |
| 				y1 = data->levels[i];
 | |
| 				y2 = data->levels[i + 1];
 | |
| 				dy = (s64)y2 - y1;
 | |
| 
 | |
| 				for (x = x1; x < x2; x++) {
 | |
| 					table[x] = y1 +
 | |
| 						div_s64(dy * (x - x1), dx);
 | |
| 				}
 | |
| 			}
 | |
| 			/* Fill in the last point, since no line starts here. */
 | |
| 			table[x2] = y2;
 | |
| 
 | |
| 			/*
 | |
| 			 * As we use interpolation lets remove current
 | |
| 			 * brightness levels table and replace for the
 | |
| 			 * new interpolated table.
 | |
| 			 */
 | |
| 			devm_kfree(dev, data->levels);
 | |
| 			data->levels = table;
 | |
| 		}
 | |
| 
 | |
| 		data->max_brightness = num_levels - 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id pwm_backlight_of_match[] = {
 | |
| 	{ .compatible = "pwm-backlight" },
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
 | |
| #else
 | |
| static int pwm_backlight_parse_dt(struct device *dev,
 | |
| 				  struct platform_pwm_backlight_data *data)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static
 | |
| int pwm_backlight_brightness_default(struct device *dev,
 | |
| 				     struct platform_pwm_backlight_data *data,
 | |
| 				     unsigned int period)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
 | |
| {
 | |
| 	unsigned int nlevels = data->max_brightness + 1;
 | |
| 	unsigned int min_val = data->levels[0];
 | |
| 	unsigned int max_val = data->levels[nlevels - 1];
 | |
| 	/*
 | |
| 	 * Multiplying by 128 means that even in pathological cases such
 | |
| 	 * as (max_val - min_val) == nlevels the error at max_val is less
 | |
| 	 * than 1%.
 | |
| 	 */
 | |
| 	unsigned int slope = (128 * (max_val - min_val)) / nlevels;
 | |
| 	unsigned int margin = (max_val - min_val) / 20; /* 5% */
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 1; i < nlevels; i++) {
 | |
| 		unsigned int linear_value = min_val + ((i * slope) / 128);
 | |
| 		unsigned int delta = abs(linear_value - data->levels[i]);
 | |
| 
 | |
| 		if (delta > margin)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
 | |
| {
 | |
| 	struct device_node *node = pb->dev->of_node;
 | |
| 	bool active = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the enable GPIO is present, observable (either as input
 | |
| 	 * or output) and off then the backlight is not currently active.
 | |
| 	 * */
 | |
| 	if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
 | |
| 		active = false;
 | |
| 
 | |
| 	if (pb->power_supply && !regulator_is_enabled(pb->power_supply))
 | |
| 		active = false;
 | |
| 
 | |
| 	if (!pwm_is_enabled(pb->pwm))
 | |
| 		active = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronize the enable_gpio with the observed state of the
 | |
| 	 * hardware.
 | |
| 	 */
 | |
| 	gpiod_direction_output(pb->enable_gpio, active);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not change pb->enabled here! pb->enabled essentially
 | |
| 	 * tells us if we own one of the regulator's use counts and
 | |
| 	 * right now we do not.
 | |
| 	 */
 | |
| 
 | |
| 	/* Not booted with device tree or no phandle link to the node */
 | |
| 	if (!node || !node->phandle)
 | |
| 		return BACKLIGHT_POWER_ON;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the driver is probed from the device tree and there is a
 | |
| 	 * phandle link pointing to the backlight node, it is safe to
 | |
| 	 * assume that another driver will enable the backlight at the
 | |
| 	 * appropriate time. Therefore, if it is disabled, keep it so.
 | |
| 	 */
 | |
| 	return active ? BACKLIGHT_POWER_ON : BACKLIGHT_POWER_OFF;
 | |
| }
 | |
| 
 | |
| static int pwm_backlight_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
 | |
| 	struct platform_pwm_backlight_data defdata;
 | |
| 	struct backlight_properties props;
 | |
| 	struct backlight_device *bl;
 | |
| 	struct pwm_bl_data *pb;
 | |
| 	struct pwm_state state;
 | |
| 	unsigned int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!data) {
 | |
| 		ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
 | |
| 		if (ret < 0)
 | |
| 			return dev_err_probe(&pdev->dev, ret,
 | |
| 					     "failed to find platform data\n");
 | |
| 
 | |
| 		data = &defdata;
 | |
| 	}
 | |
| 
 | |
| 	if (data->init) {
 | |
| 		ret = data->init(&pdev->dev);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
 | |
| 	if (!pb) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	pb->notify = data->notify;
 | |
| 	pb->notify_after = data->notify_after;
 | |
| 	pb->exit = data->exit;
 | |
| 	pb->dev = &pdev->dev;
 | |
| 	pb->enabled = false;
 | |
| 	pb->post_pwm_on_delay = data->post_pwm_on_delay;
 | |
| 	pb->pwm_off_delay = data->pwm_off_delay;
 | |
| 
 | |
| 	pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
 | |
| 						  GPIOD_ASIS);
 | |
| 	if (IS_ERR(pb->enable_gpio)) {
 | |
| 		ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->enable_gpio),
 | |
| 				    "failed to acquire enable GPIO\n");
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	pb->power_supply = devm_regulator_get_optional(&pdev->dev, "power");
 | |
| 	if (IS_ERR(pb->power_supply)) {
 | |
| 		ret = PTR_ERR(pb->power_supply);
 | |
| 		if (ret == -ENODEV) {
 | |
| 			pb->power_supply = NULL;
 | |
| 		} else {
 | |
| 			dev_err_probe(&pdev->dev, ret,
 | |
| 				      "failed to acquire power regulator\n");
 | |
| 			goto err_alloc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pb->pwm = devm_pwm_get(&pdev->dev, NULL);
 | |
| 	if (IS_ERR(pb->pwm)) {
 | |
| 		ret = dev_err_probe(&pdev->dev, PTR_ERR(pb->pwm),
 | |
| 				    "unable to request PWM\n");
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "got pwm for backlight\n");
 | |
| 
 | |
| 	/* Sync up PWM state. */
 | |
| 	pwm_init_state(pb->pwm, &state);
 | |
| 
 | |
| 	/*
 | |
| 	 * The DT case will set the pwm_period_ns field to 0 and store the
 | |
| 	 * period, parsed from the DT, in the PWM device. For the non-DT case,
 | |
| 	 * set the period from platform data if it has not already been set
 | |
| 	 * via the PWM lookup table.
 | |
| 	 */
 | |
| 	if (!state.period && (data->pwm_period_ns > 0))
 | |
| 		state.period = data->pwm_period_ns;
 | |
| 
 | |
| 	ret = pwm_apply_might_sleep(pb->pwm, &state);
 | |
| 	if (ret) {
 | |
| 		dev_err_probe(&pdev->dev, ret,
 | |
| 			      "failed to apply initial PWM state");
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	memset(&props, 0, sizeof(struct backlight_properties));
 | |
| 
 | |
| 	if (data->levels) {
 | |
| 		pb->levels = data->levels;
 | |
| 
 | |
| 		/*
 | |
| 		 * For the DT case, only when brightness levels is defined
 | |
| 		 * data->levels is filled. For the non-DT case, data->levels
 | |
| 		 * can come from platform data, however is not usual.
 | |
| 		 */
 | |
| 		for (i = 0; i <= data->max_brightness; i++)
 | |
| 			if (data->levels[i] > pb->scale)
 | |
| 				pb->scale = data->levels[i];
 | |
| 
 | |
| 		if (pwm_backlight_is_linear(data))
 | |
| 			props.scale = BACKLIGHT_SCALE_LINEAR;
 | |
| 		else
 | |
| 			props.scale = BACKLIGHT_SCALE_NON_LINEAR;
 | |
| 	} else if (!data->max_brightness) {
 | |
| 		/*
 | |
| 		 * If no brightness levels are provided and max_brightness is
 | |
| 		 * not set, use the default brightness table. For the DT case,
 | |
| 		 * max_brightness is set to 0 when brightness levels is not
 | |
| 		 * specified. For the non-DT case, max_brightness is usually
 | |
| 		 * set to some value.
 | |
| 		 */
 | |
| 
 | |
| 		/* Get the PWM period (in nanoseconds) */
 | |
| 		pwm_get_state(pb->pwm, &state);
 | |
| 
 | |
| 		ret = pwm_backlight_brightness_default(&pdev->dev, data,
 | |
| 						       state.period);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err_probe(&pdev->dev, ret,
 | |
| 				      "failed to setup default brightness table\n");
 | |
| 			goto err_alloc;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i <= data->max_brightness; i++) {
 | |
| 			if (data->levels[i] > pb->scale)
 | |
| 				pb->scale = data->levels[i];
 | |
| 
 | |
| 			pb->levels = data->levels;
 | |
| 		}
 | |
| 
 | |
| 		props.scale = BACKLIGHT_SCALE_NON_LINEAR;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * That only happens for the non-DT case, where platform data
 | |
| 		 * sets the max_brightness value.
 | |
| 		 */
 | |
| 		pb->scale = data->max_brightness;
 | |
| 	}
 | |
| 
 | |
| 	pb->lth_brightness = data->lth_brightness * (div_u64(state.period,
 | |
| 				pb->scale));
 | |
| 
 | |
| 	props.type = BACKLIGHT_RAW;
 | |
| 	props.max_brightness = data->max_brightness;
 | |
| 	bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
 | |
| 				       &pwm_backlight_ops, &props);
 | |
| 	if (IS_ERR(bl)) {
 | |
| 		ret = dev_err_probe(&pdev->dev, PTR_ERR(bl),
 | |
| 				    "failed to register backlight\n");
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	if (data->dft_brightness > data->max_brightness) {
 | |
| 		dev_warn(&pdev->dev,
 | |
| 			 "invalid default brightness level: %u, using %u\n",
 | |
| 			 data->dft_brightness, data->max_brightness);
 | |
| 		data->dft_brightness = data->max_brightness;
 | |
| 	}
 | |
| 
 | |
| 	bl->props.brightness = data->dft_brightness;
 | |
| 	bl->props.power = pwm_backlight_initial_power_state(pb);
 | |
| 	backlight_update_status(bl);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, bl);
 | |
| 	return 0;
 | |
| 
 | |
| err_alloc:
 | |
| 	if (data->exit)
 | |
| 		data->exit(&pdev->dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void pwm_backlight_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct backlight_device *bl = platform_get_drvdata(pdev);
 | |
| 	struct pwm_bl_data *pb = bl_get_data(bl);
 | |
| 	struct pwm_state state;
 | |
| 
 | |
| 	backlight_device_unregister(bl);
 | |
| 	pwm_backlight_power_off(pb);
 | |
| 	pwm_get_state(pb->pwm, &state);
 | |
| 	state.duty_cycle = 0;
 | |
| 	state.enabled = false;
 | |
| 	pwm_apply_might_sleep(pb->pwm, &state);
 | |
| 
 | |
| 	if (pb->exit)
 | |
| 		pb->exit(&pdev->dev);
 | |
| }
 | |
| 
 | |
| static void pwm_backlight_shutdown(struct platform_device *pdev)
 | |
| {
 | |
| 	struct backlight_device *bl = platform_get_drvdata(pdev);
 | |
| 	struct pwm_bl_data *pb = bl_get_data(bl);
 | |
| 	struct pwm_state state;
 | |
| 
 | |
| 	pwm_backlight_power_off(pb);
 | |
| 	pwm_get_state(pb->pwm, &state);
 | |
| 	state.duty_cycle = 0;
 | |
| 	state.enabled = false;
 | |
| 	pwm_apply_might_sleep(pb->pwm, &state);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int pwm_backlight_suspend(struct device *dev)
 | |
| {
 | |
| 	struct backlight_device *bl = dev_get_drvdata(dev);
 | |
| 	struct pwm_bl_data *pb = bl_get_data(bl);
 | |
| 	struct pwm_state state;
 | |
| 
 | |
| 	if (pb->notify)
 | |
| 		pb->notify(pb->dev, 0);
 | |
| 
 | |
| 	pwm_backlight_power_off(pb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that disabling the PWM doesn't guarantee that the output stays
 | |
| 	 * at its inactive state. However without the PWM disabled, the PWM
 | |
| 	 * driver refuses to suspend. So disable here even though this might
 | |
| 	 * enable the backlight on poorly designed boards.
 | |
| 	 */
 | |
| 	pwm_get_state(pb->pwm, &state);
 | |
| 	state.duty_cycle = 0;
 | |
| 	state.enabled = false;
 | |
| 	pwm_apply_might_sleep(pb->pwm, &state);
 | |
| 
 | |
| 	if (pb->notify_after)
 | |
| 		pb->notify_after(pb->dev, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pwm_backlight_resume(struct device *dev)
 | |
| {
 | |
| 	struct backlight_device *bl = dev_get_drvdata(dev);
 | |
| 
 | |
| 	backlight_update_status(bl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct dev_pm_ops pwm_backlight_pm_ops = {
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| 	.suspend = pwm_backlight_suspend,
 | |
| 	.resume = pwm_backlight_resume,
 | |
| 	.poweroff = pwm_backlight_suspend,
 | |
| 	.restore = pwm_backlight_resume,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static struct platform_driver pwm_backlight_driver = {
 | |
| 	.driver		= {
 | |
| 		.name		= "pwm-backlight",
 | |
| 		.pm		= &pwm_backlight_pm_ops,
 | |
| 		.of_match_table	= of_match_ptr(pwm_backlight_of_match),
 | |
| 	},
 | |
| 	.probe		= pwm_backlight_probe,
 | |
| 	.remove_new	= pwm_backlight_remove,
 | |
| 	.shutdown	= pwm_backlight_shutdown,
 | |
| };
 | |
| 
 | |
| module_platform_driver(pwm_backlight_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("PWM based Backlight Driver");
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_ALIAS("platform:pwm-backlight");
 |