312 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
 | |
|  *
 | |
|  * Derived from MIPS:
 | |
|  * Copyright (C) 1995 - 2000 by Ralf Baechle
 | |
|  */
 | |
| #include <linux/context_tracking.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/entry-common.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/kfence.h>
 | |
| 
 | |
| #include <asm/branch.h>
 | |
| #include <asm/exception.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/ptrace.h>
 | |
| 
 | |
| int show_unhandled_signals = 1;
 | |
| 
 | |
| static int __kprobes spurious_fault(unsigned long write, unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (!(address & __UA_LIMIT))
 | |
| 		return 0;
 | |
| 
 | |
| 	pgd = pgd_offset_k(address);
 | |
| 	if (!pgd_present(pgdp_get(pgd)))
 | |
| 		return 0;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (!p4d_present(p4dp_get(p4d)))
 | |
| 		return 0;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (!pud_present(pudp_get(pud)))
 | |
| 		return 0;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (!pmd_present(pmdp_get(pmd)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_leaf(*pmd)) {
 | |
| 		return write ? pmd_write(pmdp_get(pmd)) : 1;
 | |
| 	} else {
 | |
| 		pte = pte_offset_kernel(pmd, address);
 | |
| 		if (!pte_present(ptep_get(pte)))
 | |
| 			return 0;
 | |
| 
 | |
| 		return write ? pte_write(ptep_get(pte)) : 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kprobes no_context(struct pt_regs *regs,
 | |
| 			unsigned long write, unsigned long address)
 | |
| {
 | |
| 	const int field = sizeof(unsigned long) * 2;
 | |
| 
 | |
| 	if (spurious_fault(write, address))
 | |
| 		return;
 | |
| 
 | |
| 	/* Are we prepared to handle this kernel fault?	 */
 | |
| 	if (fixup_exception(regs))
 | |
| 		return;
 | |
| 
 | |
| 	if (kfence_handle_page_fault(address, write, regs))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Oops. The kernel tried to access some bad page. We'll have to
 | |
| 	 * terminate things with extreme prejudice.
 | |
| 	 */
 | |
| 	bust_spinlocks(1);
 | |
| 
 | |
| 	pr_alert("CPU %d Unable to handle kernel paging request at "
 | |
| 	       "virtual address %0*lx, era == %0*lx, ra == %0*lx\n",
 | |
| 	       raw_smp_processor_id(), field, address, field, regs->csr_era,
 | |
| 	       field,  regs->regs[1]);
 | |
| 	die("Oops", regs);
 | |
| }
 | |
| 
 | |
| static void __kprobes do_out_of_memory(struct pt_regs *regs,
 | |
| 			unsigned long write, unsigned long address)
 | |
| {
 | |
| 	/*
 | |
| 	 * We ran out of memory, call the OOM killer, and return the userspace
 | |
| 	 * (which will retry the fault, or kill us if we got oom-killed).
 | |
| 	 */
 | |
| 	if (!user_mode(regs)) {
 | |
| 		no_context(regs, write, address);
 | |
| 		return;
 | |
| 	}
 | |
| 	pagefault_out_of_memory();
 | |
| }
 | |
| 
 | |
| static void __kprobes do_sigbus(struct pt_regs *regs,
 | |
| 		unsigned long write, unsigned long address, int si_code)
 | |
| {
 | |
| 	/* Kernel mode? Handle exceptions or die */
 | |
| 	if (!user_mode(regs)) {
 | |
| 		no_context(regs, write, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Send a sigbus, regardless of whether we were in kernel
 | |
| 	 * or user mode.
 | |
| 	 */
 | |
| 	current->thread.csr_badvaddr = address;
 | |
| 	current->thread.trap_nr = read_csr_excode();
 | |
| 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 | |
| }
 | |
| 
 | |
| static void __kprobes do_sigsegv(struct pt_regs *regs,
 | |
| 		unsigned long write, unsigned long address, int si_code)
 | |
| {
 | |
| 	const int field = sizeof(unsigned long) * 2;
 | |
| 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 | |
| 
 | |
| 	/* Kernel mode? Handle exceptions or die */
 | |
| 	if (!user_mode(regs)) {
 | |
| 		no_context(regs, write, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* User mode accesses just cause a SIGSEGV */
 | |
| 	current->thread.csr_badvaddr = address;
 | |
| 	if (!write)
 | |
| 		current->thread.error_code = 1;
 | |
| 	else
 | |
| 		current->thread.error_code = 2;
 | |
| 	current->thread.trap_nr = read_csr_excode();
 | |
| 
 | |
| 	if (show_unhandled_signals &&
 | |
| 	    unhandled_signal(current, SIGSEGV) && __ratelimit(&ratelimit_state)) {
 | |
| 		pr_info("do_page_fault(): sending SIGSEGV to %s for invalid %s %0*lx\n",
 | |
| 			current->comm,
 | |
| 			write ? "write access to" : "read access from",
 | |
| 			field, address);
 | |
| 		pr_info("era = %0*lx in", field,
 | |
| 			(unsigned long) regs->csr_era);
 | |
| 		print_vma_addr(KERN_CONT " ", regs->csr_era);
 | |
| 		pr_cont("\n");
 | |
| 		pr_info("ra  = %0*lx in", field,
 | |
| 			(unsigned long) regs->regs[1]);
 | |
| 		print_vma_addr(KERN_CONT " ", regs->regs[1]);
 | |
| 		pr_cont("\n");
 | |
| 	}
 | |
| 	force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine handles page faults.  It determines the address,
 | |
|  * and the problem, and then passes it off to one of the appropriate
 | |
|  * routines.
 | |
|  */
 | |
| static void __kprobes __do_page_fault(struct pt_regs *regs,
 | |
| 			unsigned long write, unsigned long address)
 | |
| {
 | |
| 	int si_code = SEGV_MAPERR;
 | |
| 	unsigned int flags = FAULT_FLAG_DEFAULT;
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct mm_struct *mm = tsk->mm;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	vm_fault_t fault;
 | |
| 
 | |
| 	if (kprobe_page_fault(regs, current->thread.trap_nr))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We fault-in kernel-space virtual memory on-demand. The
 | |
| 	 * 'reference' page table is init_mm.pgd.
 | |
| 	 *
 | |
| 	 * NOTE! We MUST NOT take any locks for this case. We may
 | |
| 	 * be in an interrupt or a critical region, and should
 | |
| 	 * only copy the information from the master page table,
 | |
| 	 * nothing more.
 | |
| 	 */
 | |
| 	if (address & __UA_LIMIT) {
 | |
| 		if (!user_mode(regs))
 | |
| 			no_context(regs, write, address);
 | |
| 		else
 | |
| 			do_sigsegv(regs, write, address, si_code);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in an interrupt or have no user
 | |
| 	 * context, we must not take the fault..
 | |
| 	 */
 | |
| 	if (faulthandler_disabled() || !mm) {
 | |
| 		do_sigsegv(regs, write, address, si_code);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (user_mode(regs))
 | |
| 		flags |= FAULT_FLAG_USER;
 | |
| 
 | |
| 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 | |
| retry:
 | |
| 	vma = lock_mm_and_find_vma(mm, address, regs);
 | |
| 	if (unlikely(!vma))
 | |
| 		goto bad_area_nosemaphore;
 | |
| 	goto good_area;
 | |
| 
 | |
| /*
 | |
|  * Something tried to access memory that isn't in our memory map..
 | |
|  * Fix it, but check if it's kernel or user first..
 | |
|  */
 | |
| bad_area:
 | |
| 	mmap_read_unlock(mm);
 | |
| bad_area_nosemaphore:
 | |
| 	do_sigsegv(regs, write, address, si_code);
 | |
| 	return;
 | |
| 
 | |
| /*
 | |
|  * Ok, we have a good vm_area for this memory access, so
 | |
|  * we can handle it..
 | |
|  */
 | |
| good_area:
 | |
| 	si_code = SEGV_ACCERR;
 | |
| 
 | |
| 	if (write) {
 | |
| 		flags |= FAULT_FLAG_WRITE;
 | |
| 		if (!(vma->vm_flags & VM_WRITE))
 | |
| 			goto bad_area;
 | |
| 	} else {
 | |
| 		if (!(vma->vm_flags & VM_EXEC) && address == exception_era(regs))
 | |
| 			goto bad_area;
 | |
| 		if (!(vma->vm_flags & (VM_READ | VM_WRITE)) && address != exception_era(regs))
 | |
| 			goto bad_area;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault,
 | |
| 	 * make sure we exit gracefully rather than endlessly redo
 | |
| 	 * the fault.
 | |
| 	 */
 | |
| 	fault = handle_mm_fault(vma, address, flags, regs);
 | |
| 
 | |
| 	if (fault_signal_pending(fault, regs)) {
 | |
| 		if (!user_mode(regs))
 | |
| 			no_context(regs, write, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The fault is fully completed (including releasing mmap lock) */
 | |
| 	if (fault & VM_FAULT_COMPLETED)
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(fault & VM_FAULT_RETRY)) {
 | |
| 		flags |= FAULT_FLAG_TRIED;
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to mmap_read_unlock(mm) as we would
 | |
| 		 * have already released it in __lock_page_or_retry
 | |
| 		 * in mm/filemap.c.
 | |
| 		 */
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (unlikely(fault & VM_FAULT_ERROR)) {
 | |
| 		mmap_read_unlock(mm);
 | |
| 		if (fault & VM_FAULT_OOM) {
 | |
| 			do_out_of_memory(regs, write, address);
 | |
| 			return;
 | |
| 		} else if (fault & VM_FAULT_SIGSEGV) {
 | |
| 			do_sigsegv(regs, write, address, si_code);
 | |
| 			return;
 | |
| 		} else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 | |
| 			do_sigbus(regs, write, address, si_code);
 | |
| 			return;
 | |
| 		}
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	mmap_read_unlock(mm);
 | |
| }
 | |
| 
 | |
| asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
 | |
| 			unsigned long write, unsigned long address)
 | |
| {
 | |
| 	irqentry_state_t state = irqentry_enter(regs);
 | |
| 
 | |
| 	/* Enable interrupt if enabled in parent context */
 | |
| 	if (likely(regs->csr_prmd & CSR_PRMD_PIE))
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	__do_page_fault(regs, write, address);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	irqentry_exit(regs, state);
 | |
| }
 |