3550 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3550 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0
 | 
						|
 *
 | 
						|
 * IO cost model based controller.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
 | 
						|
 * Copyright (C) 2019 Andy Newell <newella@fb.com>
 | 
						|
 * Copyright (C) 2019 Facebook
 | 
						|
 *
 | 
						|
 * One challenge of controlling IO resources is the lack of trivially
 | 
						|
 * observable cost metric.  This is distinguished from CPU and memory where
 | 
						|
 * wallclock time and the number of bytes can serve as accurate enough
 | 
						|
 * approximations.
 | 
						|
 *
 | 
						|
 * Bandwidth and iops are the most commonly used metrics for IO devices but
 | 
						|
 * depending on the type and specifics of the device, different IO patterns
 | 
						|
 * easily lead to multiple orders of magnitude variations rendering them
 | 
						|
 * useless for the purpose of IO capacity distribution.  While on-device
 | 
						|
 * time, with a lot of clutches, could serve as a useful approximation for
 | 
						|
 * non-queued rotational devices, this is no longer viable with modern
 | 
						|
 * devices, even the rotational ones.
 | 
						|
 *
 | 
						|
 * While there is no cost metric we can trivially observe, it isn't a
 | 
						|
 * complete mystery.  For example, on a rotational device, seek cost
 | 
						|
 * dominates while a contiguous transfer contributes a smaller amount
 | 
						|
 * proportional to the size.  If we can characterize at least the relative
 | 
						|
 * costs of these different types of IOs, it should be possible to
 | 
						|
 * implement a reasonable work-conserving proportional IO resource
 | 
						|
 * distribution.
 | 
						|
 *
 | 
						|
 * 1. IO Cost Model
 | 
						|
 *
 | 
						|
 * IO cost model estimates the cost of an IO given its basic parameters and
 | 
						|
 * history (e.g. the end sector of the last IO).  The cost is measured in
 | 
						|
 * device time.  If a given IO is estimated to cost 10ms, the device should
 | 
						|
 * be able to process ~100 of those IOs in a second.
 | 
						|
 *
 | 
						|
 * Currently, there's only one builtin cost model - linear.  Each IO is
 | 
						|
 * classified as sequential or random and given a base cost accordingly.
 | 
						|
 * On top of that, a size cost proportional to the length of the IO is
 | 
						|
 * added.  While simple, this model captures the operational
 | 
						|
 * characteristics of a wide varienty of devices well enough.  Default
 | 
						|
 * parameters for several different classes of devices are provided and the
 | 
						|
 * parameters can be configured from userspace via
 | 
						|
 * /sys/fs/cgroup/io.cost.model.
 | 
						|
 *
 | 
						|
 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
 | 
						|
 * device-specific coefficients.
 | 
						|
 *
 | 
						|
 * 2. Control Strategy
 | 
						|
 *
 | 
						|
 * The device virtual time (vtime) is used as the primary control metric.
 | 
						|
 * The control strategy is composed of the following three parts.
 | 
						|
 *
 | 
						|
 * 2-1. Vtime Distribution
 | 
						|
 *
 | 
						|
 * When a cgroup becomes active in terms of IOs, its hierarchical share is
 | 
						|
 * calculated.  Please consider the following hierarchy where the numbers
 | 
						|
 * inside parentheses denote the configured weights.
 | 
						|
 *
 | 
						|
 *           root
 | 
						|
 *         /       \
 | 
						|
 *      A (w:100)  B (w:300)
 | 
						|
 *      /       \
 | 
						|
 *  A0 (w:100)  A1 (w:100)
 | 
						|
 *
 | 
						|
 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
 | 
						|
 * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
 | 
						|
 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
 | 
						|
 * 12.5% each.  The distribution mechanism only cares about these flattened
 | 
						|
 * shares.  They're called hweights (hierarchical weights) and always add
 | 
						|
 * upto 1 (WEIGHT_ONE).
 | 
						|
 *
 | 
						|
 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
 | 
						|
 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
 | 
						|
 * against the device vtime - an IO which takes 10ms on the underlying
 | 
						|
 * device is considered to take 80ms on A0.
 | 
						|
 *
 | 
						|
 * This constitutes the basis of IO capacity distribution.  Each cgroup's
 | 
						|
 * vtime is running at a rate determined by its hweight.  A cgroup tracks
 | 
						|
 * the vtime consumed by past IOs and can issue a new IO if doing so
 | 
						|
 * wouldn't outrun the current device vtime.  Otherwise, the IO is
 | 
						|
 * suspended until the vtime has progressed enough to cover it.
 | 
						|
 *
 | 
						|
 * 2-2. Vrate Adjustment
 | 
						|
 *
 | 
						|
 * It's unrealistic to expect the cost model to be perfect.  There are too
 | 
						|
 * many devices and even on the same device the overall performance
 | 
						|
 * fluctuates depending on numerous factors such as IO mixture and device
 | 
						|
 * internal garbage collection.  The controller needs to adapt dynamically.
 | 
						|
 *
 | 
						|
 * This is achieved by adjusting the overall IO rate according to how busy
 | 
						|
 * the device is.  If the device becomes overloaded, we're sending down too
 | 
						|
 * many IOs and should generally slow down.  If there are waiting issuers
 | 
						|
 * but the device isn't saturated, we're issuing too few and should
 | 
						|
 * generally speed up.
 | 
						|
 *
 | 
						|
 * To slow down, we lower the vrate - the rate at which the device vtime
 | 
						|
 * passes compared to the wall clock.  For example, if the vtime is running
 | 
						|
 * at the vrate of 75%, all cgroups added up would only be able to issue
 | 
						|
 * 750ms worth of IOs per second, and vice-versa for speeding up.
 | 
						|
 *
 | 
						|
 * Device business is determined using two criteria - rq wait and
 | 
						|
 * completion latencies.
 | 
						|
 *
 | 
						|
 * When a device gets saturated, the on-device and then the request queues
 | 
						|
 * fill up and a bio which is ready to be issued has to wait for a request
 | 
						|
 * to become available.  When this delay becomes noticeable, it's a clear
 | 
						|
 * indication that the device is saturated and we lower the vrate.  This
 | 
						|
 * saturation signal is fairly conservative as it only triggers when both
 | 
						|
 * hardware and software queues are filled up, and is used as the default
 | 
						|
 * busy signal.
 | 
						|
 *
 | 
						|
 * As devices can have deep queues and be unfair in how the queued commands
 | 
						|
 * are executed, solely depending on rq wait may not result in satisfactory
 | 
						|
 * control quality.  For a better control quality, completion latency QoS
 | 
						|
 * parameters can be configured so that the device is considered saturated
 | 
						|
 * if N'th percentile completion latency rises above the set point.
 | 
						|
 *
 | 
						|
 * The completion latency requirements are a function of both the
 | 
						|
 * underlying device characteristics and the desired IO latency quality of
 | 
						|
 * service.  There is an inherent trade-off - the tighter the latency QoS,
 | 
						|
 * the higher the bandwidth lossage.  Latency QoS is disabled by default
 | 
						|
 * and can be set through /sys/fs/cgroup/io.cost.qos.
 | 
						|
 *
 | 
						|
 * 2-3. Work Conservation
 | 
						|
 *
 | 
						|
 * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
 | 
						|
 * periodically while B is sending out enough parallel IOs to saturate the
 | 
						|
 * device on its own.  Let's say A's usage amounts to 100ms worth of IO
 | 
						|
 * cost per second, i.e., 10% of the device capacity.  The naive
 | 
						|
 * distribution of half and half would lead to 60% utilization of the
 | 
						|
 * device, a significant reduction in the total amount of work done
 | 
						|
 * compared to free-for-all competition.  This is too high a cost to pay
 | 
						|
 * for IO control.
 | 
						|
 *
 | 
						|
 * To conserve the total amount of work done, we keep track of how much
 | 
						|
 * each active cgroup is actually using and yield part of its weight if
 | 
						|
 * there are other cgroups which can make use of it.  In the above case,
 | 
						|
 * A's weight will be lowered so that it hovers above the actual usage and
 | 
						|
 * B would be able to use the rest.
 | 
						|
 *
 | 
						|
 * As we don't want to penalize a cgroup for donating its weight, the
 | 
						|
 * surplus weight adjustment factors in a margin and has an immediate
 | 
						|
 * snapback mechanism in case the cgroup needs more IO vtime for itself.
 | 
						|
 *
 | 
						|
 * Note that adjusting down surplus weights has the same effects as
 | 
						|
 * accelerating vtime for other cgroups and work conservation can also be
 | 
						|
 * implemented by adjusting vrate dynamically.  However, squaring who can
 | 
						|
 * donate and should take back how much requires hweight propagations
 | 
						|
 * anyway making it easier to implement and understand as a separate
 | 
						|
 * mechanism.
 | 
						|
 *
 | 
						|
 * 3. Monitoring
 | 
						|
 *
 | 
						|
 * Instead of debugfs or other clumsy monitoring mechanisms, this
 | 
						|
 * controller uses a drgn based monitoring script -
 | 
						|
 * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
 | 
						|
 * https://github.com/osandov/drgn.  The output looks like the following.
 | 
						|
 *
 | 
						|
 *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
 | 
						|
 *                 active      weight      hweight% inflt% dbt  delay usages%
 | 
						|
 *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
 | 
						|
 *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
 | 
						|
 *
 | 
						|
 * - per	: Timer period
 | 
						|
 * - cur_per	: Internal wall and device vtime clock
 | 
						|
 * - vrate	: Device virtual time rate against wall clock
 | 
						|
 * - weight	: Surplus-adjusted and configured weights
 | 
						|
 * - hweight	: Surplus-adjusted and configured hierarchical weights
 | 
						|
 * - inflt	: The percentage of in-flight IO cost at the end of last period
 | 
						|
 * - del_ms	: Deferred issuer delay induction level and duration
 | 
						|
 * - usages	: Usage history
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/timer.h>
 | 
						|
#include <linux/time64.h>
 | 
						|
#include <linux/parser.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <asm/local.h>
 | 
						|
#include <asm/local64.h>
 | 
						|
#include "blk-rq-qos.h"
 | 
						|
#include "blk-stat.h"
 | 
						|
#include "blk-wbt.h"
 | 
						|
#include "blk-cgroup.h"
 | 
						|
 | 
						|
#ifdef CONFIG_TRACEPOINTS
 | 
						|
 | 
						|
/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
 | 
						|
#define TRACE_IOCG_PATH_LEN 1024
 | 
						|
static DEFINE_SPINLOCK(trace_iocg_path_lock);
 | 
						|
static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
 | 
						|
 | 
						|
#define TRACE_IOCG_PATH(type, iocg, ...)					\
 | 
						|
	do {									\
 | 
						|
		unsigned long flags;						\
 | 
						|
		if (trace_iocost_##type##_enabled()) {				\
 | 
						|
			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
 | 
						|
			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
 | 
						|
				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
 | 
						|
			trace_iocost_##type(iocg, trace_iocg_path,		\
 | 
						|
					      ##__VA_ARGS__);			\
 | 
						|
			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
 | 
						|
		}								\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#else	/* CONFIG_TRACE_POINTS */
 | 
						|
#define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
 | 
						|
#endif	/* CONFIG_TRACE_POINTS */
 | 
						|
 | 
						|
enum {
 | 
						|
	MILLION			= 1000000,
 | 
						|
 | 
						|
	/* timer period is calculated from latency requirements, bound it */
 | 
						|
	MIN_PERIOD		= USEC_PER_MSEC,
 | 
						|
	MAX_PERIOD		= USEC_PER_SEC,
 | 
						|
 | 
						|
	/*
 | 
						|
	 * iocg->vtime is targeted at 50% behind the device vtime, which
 | 
						|
	 * serves as its IO credit buffer.  Surplus weight adjustment is
 | 
						|
	 * immediately canceled if the vtime margin runs below 10%.
 | 
						|
	 */
 | 
						|
	MARGIN_MIN_PCT		= 10,
 | 
						|
	MARGIN_LOW_PCT		= 20,
 | 
						|
	MARGIN_TARGET_PCT	= 50,
 | 
						|
 | 
						|
	INUSE_ADJ_STEP_PCT	= 25,
 | 
						|
 | 
						|
	/* Have some play in timer operations */
 | 
						|
	TIMER_SLACK_PCT		= 1,
 | 
						|
 | 
						|
	/* 1/64k is granular enough and can easily be handled w/ u32 */
 | 
						|
	WEIGHT_ONE		= 1 << 16,
 | 
						|
};
 | 
						|
 | 
						|
enum {
 | 
						|
	/*
 | 
						|
	 * As vtime is used to calculate the cost of each IO, it needs to
 | 
						|
	 * be fairly high precision.  For example, it should be able to
 | 
						|
	 * represent the cost of a single page worth of discard with
 | 
						|
	 * suffificient accuracy.  At the same time, it should be able to
 | 
						|
	 * represent reasonably long enough durations to be useful and
 | 
						|
	 * convenient during operation.
 | 
						|
	 *
 | 
						|
	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
 | 
						|
	 * granularity and days of wrap-around time even at extreme vrates.
 | 
						|
	 */
 | 
						|
	VTIME_PER_SEC_SHIFT	= 37,
 | 
						|
	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
 | 
						|
	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
 | 
						|
	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
 | 
						|
 | 
						|
	/* bound vrate adjustments within two orders of magnitude */
 | 
						|
	VRATE_MIN_PPM		= 10000,	/* 1% */
 | 
						|
	VRATE_MAX_PPM		= 100000000,	/* 10000% */
 | 
						|
 | 
						|
	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
 | 
						|
	VRATE_CLAMP_ADJ_PCT	= 4,
 | 
						|
 | 
						|
	/* switch iff the conditions are met for longer than this */
 | 
						|
	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
 | 
						|
};
 | 
						|
 | 
						|
enum {
 | 
						|
	/* if IOs end up waiting for requests, issue less */
 | 
						|
	RQ_WAIT_BUSY_PCT	= 5,
 | 
						|
 | 
						|
	/* unbusy hysterisis */
 | 
						|
	UNBUSY_THR_PCT		= 75,
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The effect of delay is indirect and non-linear and a huge amount of
 | 
						|
	 * future debt can accumulate abruptly while unthrottled. Linearly scale
 | 
						|
	 * up delay as debt is going up and then let it decay exponentially.
 | 
						|
	 * This gives us quick ramp ups while delay is accumulating and long
 | 
						|
	 * tails which can help reducing the frequency of debt explosions on
 | 
						|
	 * unthrottle. The parameters are experimentally determined.
 | 
						|
	 *
 | 
						|
	 * The delay mechanism provides adequate protection and behavior in many
 | 
						|
	 * cases. However, this is far from ideal and falls shorts on both
 | 
						|
	 * fronts. The debtors are often throttled too harshly costing a
 | 
						|
	 * significant level of fairness and possibly total work while the
 | 
						|
	 * protection against their impacts on the system can be choppy and
 | 
						|
	 * unreliable.
 | 
						|
	 *
 | 
						|
	 * The shortcoming primarily stems from the fact that, unlike for page
 | 
						|
	 * cache, the kernel doesn't have well-defined back-pressure propagation
 | 
						|
	 * mechanism and policies for anonymous memory. Fully addressing this
 | 
						|
	 * issue will likely require substantial improvements in the area.
 | 
						|
	 */
 | 
						|
	MIN_DELAY_THR_PCT	= 500,
 | 
						|
	MAX_DELAY_THR_PCT	= 25000,
 | 
						|
	MIN_DELAY		= 250,
 | 
						|
	MAX_DELAY		= 250 * USEC_PER_MSEC,
 | 
						|
 | 
						|
	/* halve debts if avg usage over 100ms is under 50% */
 | 
						|
	DFGV_USAGE_PCT		= 50,
 | 
						|
	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
 | 
						|
 | 
						|
	/* don't let cmds which take a very long time pin lagging for too long */
 | 
						|
	MAX_LAGGING_PERIODS	= 10,
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Count IO size in 4k pages.  The 12bit shift helps keeping
 | 
						|
	 * size-proportional components of cost calculation in closer
 | 
						|
	 * numbers of digits to per-IO cost components.
 | 
						|
	 */
 | 
						|
	IOC_PAGE_SHIFT		= 12,
 | 
						|
	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
 | 
						|
	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
 | 
						|
 | 
						|
	/* if apart further than 16M, consider randio for linear model */
 | 
						|
	LCOEF_RANDIO_PAGES	= 4096,
 | 
						|
};
 | 
						|
 | 
						|
enum ioc_running {
 | 
						|
	IOC_IDLE,
 | 
						|
	IOC_RUNNING,
 | 
						|
	IOC_STOP,
 | 
						|
};
 | 
						|
 | 
						|
/* io.cost.qos controls including per-dev enable of the whole controller */
 | 
						|
enum {
 | 
						|
	QOS_ENABLE,
 | 
						|
	QOS_CTRL,
 | 
						|
	NR_QOS_CTRL_PARAMS,
 | 
						|
};
 | 
						|
 | 
						|
/* io.cost.qos params */
 | 
						|
enum {
 | 
						|
	QOS_RPPM,
 | 
						|
	QOS_RLAT,
 | 
						|
	QOS_WPPM,
 | 
						|
	QOS_WLAT,
 | 
						|
	QOS_MIN,
 | 
						|
	QOS_MAX,
 | 
						|
	NR_QOS_PARAMS,
 | 
						|
};
 | 
						|
 | 
						|
/* io.cost.model controls */
 | 
						|
enum {
 | 
						|
	COST_CTRL,
 | 
						|
	COST_MODEL,
 | 
						|
	NR_COST_CTRL_PARAMS,
 | 
						|
};
 | 
						|
 | 
						|
/* builtin linear cost model coefficients */
 | 
						|
enum {
 | 
						|
	I_LCOEF_RBPS,
 | 
						|
	I_LCOEF_RSEQIOPS,
 | 
						|
	I_LCOEF_RRANDIOPS,
 | 
						|
	I_LCOEF_WBPS,
 | 
						|
	I_LCOEF_WSEQIOPS,
 | 
						|
	I_LCOEF_WRANDIOPS,
 | 
						|
	NR_I_LCOEFS,
 | 
						|
};
 | 
						|
 | 
						|
enum {
 | 
						|
	LCOEF_RPAGE,
 | 
						|
	LCOEF_RSEQIO,
 | 
						|
	LCOEF_RRANDIO,
 | 
						|
	LCOEF_WPAGE,
 | 
						|
	LCOEF_WSEQIO,
 | 
						|
	LCOEF_WRANDIO,
 | 
						|
	NR_LCOEFS,
 | 
						|
};
 | 
						|
 | 
						|
enum {
 | 
						|
	AUTOP_INVALID,
 | 
						|
	AUTOP_HDD,
 | 
						|
	AUTOP_SSD_QD1,
 | 
						|
	AUTOP_SSD_DFL,
 | 
						|
	AUTOP_SSD_FAST,
 | 
						|
};
 | 
						|
 | 
						|
struct ioc_params {
 | 
						|
	u32				qos[NR_QOS_PARAMS];
 | 
						|
	u64				i_lcoefs[NR_I_LCOEFS];
 | 
						|
	u64				lcoefs[NR_LCOEFS];
 | 
						|
	u32				too_fast_vrate_pct;
 | 
						|
	u32				too_slow_vrate_pct;
 | 
						|
};
 | 
						|
 | 
						|
struct ioc_margins {
 | 
						|
	s64				min;
 | 
						|
	s64				low;
 | 
						|
	s64				target;
 | 
						|
};
 | 
						|
 | 
						|
struct ioc_missed {
 | 
						|
	local_t				nr_met;
 | 
						|
	local_t				nr_missed;
 | 
						|
	u32				last_met;
 | 
						|
	u32				last_missed;
 | 
						|
};
 | 
						|
 | 
						|
struct ioc_pcpu_stat {
 | 
						|
	struct ioc_missed		missed[2];
 | 
						|
 | 
						|
	local64_t			rq_wait_ns;
 | 
						|
	u64				last_rq_wait_ns;
 | 
						|
};
 | 
						|
 | 
						|
/* per device */
 | 
						|
struct ioc {
 | 
						|
	struct rq_qos			rqos;
 | 
						|
 | 
						|
	bool				enabled;
 | 
						|
 | 
						|
	struct ioc_params		params;
 | 
						|
	struct ioc_margins		margins;
 | 
						|
	u32				period_us;
 | 
						|
	u32				timer_slack_ns;
 | 
						|
	u64				vrate_min;
 | 
						|
	u64				vrate_max;
 | 
						|
 | 
						|
	spinlock_t			lock;
 | 
						|
	struct timer_list		timer;
 | 
						|
	struct list_head		active_iocgs;	/* active cgroups */
 | 
						|
	struct ioc_pcpu_stat __percpu	*pcpu_stat;
 | 
						|
 | 
						|
	enum ioc_running		running;
 | 
						|
	atomic64_t			vtime_rate;
 | 
						|
	u64				vtime_base_rate;
 | 
						|
	s64				vtime_err;
 | 
						|
 | 
						|
	seqcount_spinlock_t		period_seqcount;
 | 
						|
	u64				period_at;	/* wallclock starttime */
 | 
						|
	u64				period_at_vtime; /* vtime starttime */
 | 
						|
 | 
						|
	atomic64_t			cur_period;	/* inc'd each period */
 | 
						|
	int				busy_level;	/* saturation history */
 | 
						|
 | 
						|
	bool				weights_updated;
 | 
						|
	atomic_t			hweight_gen;	/* for lazy hweights */
 | 
						|
 | 
						|
	/* debt forgivness */
 | 
						|
	u64				dfgv_period_at;
 | 
						|
	u64				dfgv_period_rem;
 | 
						|
	u64				dfgv_usage_us_sum;
 | 
						|
 | 
						|
	u64				autop_too_fast_at;
 | 
						|
	u64				autop_too_slow_at;
 | 
						|
	int				autop_idx;
 | 
						|
	bool				user_qos_params:1;
 | 
						|
	bool				user_cost_model:1;
 | 
						|
};
 | 
						|
 | 
						|
struct iocg_pcpu_stat {
 | 
						|
	local64_t			abs_vusage;
 | 
						|
};
 | 
						|
 | 
						|
struct iocg_stat {
 | 
						|
	u64				usage_us;
 | 
						|
	u64				wait_us;
 | 
						|
	u64				indebt_us;
 | 
						|
	u64				indelay_us;
 | 
						|
};
 | 
						|
 | 
						|
/* per device-cgroup pair */
 | 
						|
struct ioc_gq {
 | 
						|
	struct blkg_policy_data		pd;
 | 
						|
	struct ioc			*ioc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A iocg can get its weight from two sources - an explicit
 | 
						|
	 * per-device-cgroup configuration or the default weight of the
 | 
						|
	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
 | 
						|
	 * configuration.  `weight` is the effective considering both
 | 
						|
	 * sources.
 | 
						|
	 *
 | 
						|
	 * When an idle cgroup becomes active its `active` goes from 0 to
 | 
						|
	 * `weight`.  `inuse` is the surplus adjusted active weight.
 | 
						|
	 * `active` and `inuse` are used to calculate `hweight_active` and
 | 
						|
	 * `hweight_inuse`.
 | 
						|
	 *
 | 
						|
	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
 | 
						|
	 * surplus adjustments.
 | 
						|
	 *
 | 
						|
	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
 | 
						|
	 * to determine and track adjustments.
 | 
						|
	 */
 | 
						|
	u32				cfg_weight;
 | 
						|
	u32				weight;
 | 
						|
	u32				active;
 | 
						|
	u32				inuse;
 | 
						|
 | 
						|
	u32				last_inuse;
 | 
						|
	s64				saved_margin;
 | 
						|
 | 
						|
	sector_t			cursor;		/* to detect randio */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
 | 
						|
	 * issued.  If lagging behind device vtime, the delta represents
 | 
						|
	 * the currently available IO budget.  If running ahead, the
 | 
						|
	 * overage.
 | 
						|
	 *
 | 
						|
	 * `vtime_done` is the same but progressed on completion rather
 | 
						|
	 * than issue.  The delta behind `vtime` represents the cost of
 | 
						|
	 * currently in-flight IOs.
 | 
						|
	 */
 | 
						|
	atomic64_t			vtime;
 | 
						|
	atomic64_t			done_vtime;
 | 
						|
	u64				abs_vdebt;
 | 
						|
 | 
						|
	/* current delay in effect and when it started */
 | 
						|
	u64				delay;
 | 
						|
	u64				delay_at;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The period this iocg was last active in.  Used for deactivation
 | 
						|
	 * and invalidating `vtime`.
 | 
						|
	 */
 | 
						|
	atomic64_t			active_period;
 | 
						|
	struct list_head		active_list;
 | 
						|
 | 
						|
	/* see __propagate_weights() and current_hweight() for details */
 | 
						|
	u64				child_active_sum;
 | 
						|
	u64				child_inuse_sum;
 | 
						|
	u64				child_adjusted_sum;
 | 
						|
	int				hweight_gen;
 | 
						|
	u32				hweight_active;
 | 
						|
	u32				hweight_inuse;
 | 
						|
	u32				hweight_donating;
 | 
						|
	u32				hweight_after_donation;
 | 
						|
 | 
						|
	struct list_head		walk_list;
 | 
						|
	struct list_head		surplus_list;
 | 
						|
 | 
						|
	struct wait_queue_head		waitq;
 | 
						|
	struct hrtimer			waitq_timer;
 | 
						|
 | 
						|
	/* timestamp at the latest activation */
 | 
						|
	u64				activated_at;
 | 
						|
 | 
						|
	/* statistics */
 | 
						|
	struct iocg_pcpu_stat __percpu	*pcpu_stat;
 | 
						|
	struct iocg_stat		stat;
 | 
						|
	struct iocg_stat		last_stat;
 | 
						|
	u64				last_stat_abs_vusage;
 | 
						|
	u64				usage_delta_us;
 | 
						|
	u64				wait_since;
 | 
						|
	u64				indebt_since;
 | 
						|
	u64				indelay_since;
 | 
						|
 | 
						|
	/* this iocg's depth in the hierarchy and ancestors including self */
 | 
						|
	int				level;
 | 
						|
	struct ioc_gq			*ancestors[];
 | 
						|
};
 | 
						|
 | 
						|
/* per cgroup */
 | 
						|
struct ioc_cgrp {
 | 
						|
	struct blkcg_policy_data	cpd;
 | 
						|
	unsigned int			dfl_weight;
 | 
						|
};
 | 
						|
 | 
						|
struct ioc_now {
 | 
						|
	u64				now_ns;
 | 
						|
	u64				now;
 | 
						|
	u64				vnow;
 | 
						|
};
 | 
						|
 | 
						|
struct iocg_wait {
 | 
						|
	struct wait_queue_entry		wait;
 | 
						|
	struct bio			*bio;
 | 
						|
	u64				abs_cost;
 | 
						|
	bool				committed;
 | 
						|
};
 | 
						|
 | 
						|
struct iocg_wake_ctx {
 | 
						|
	struct ioc_gq			*iocg;
 | 
						|
	u32				hw_inuse;
 | 
						|
	s64				vbudget;
 | 
						|
};
 | 
						|
 | 
						|
static const struct ioc_params autop[] = {
 | 
						|
	[AUTOP_HDD] = {
 | 
						|
		.qos				= {
 | 
						|
			[QOS_RLAT]		=        250000, /* 250ms */
 | 
						|
			[QOS_WLAT]		=        250000,
 | 
						|
			[QOS_MIN]		= VRATE_MIN_PPM,
 | 
						|
			[QOS_MAX]		= VRATE_MAX_PPM,
 | 
						|
		},
 | 
						|
		.i_lcoefs			= {
 | 
						|
			[I_LCOEF_RBPS]		=     174019176,
 | 
						|
			[I_LCOEF_RSEQIOPS]	=         41708,
 | 
						|
			[I_LCOEF_RRANDIOPS]	=           370,
 | 
						|
			[I_LCOEF_WBPS]		=     178075866,
 | 
						|
			[I_LCOEF_WSEQIOPS]	=         42705,
 | 
						|
			[I_LCOEF_WRANDIOPS]	=           378,
 | 
						|
		},
 | 
						|
	},
 | 
						|
	[AUTOP_SSD_QD1] = {
 | 
						|
		.qos				= {
 | 
						|
			[QOS_RLAT]		=         25000, /* 25ms */
 | 
						|
			[QOS_WLAT]		=         25000,
 | 
						|
			[QOS_MIN]		= VRATE_MIN_PPM,
 | 
						|
			[QOS_MAX]		= VRATE_MAX_PPM,
 | 
						|
		},
 | 
						|
		.i_lcoefs			= {
 | 
						|
			[I_LCOEF_RBPS]		=     245855193,
 | 
						|
			[I_LCOEF_RSEQIOPS]	=         61575,
 | 
						|
			[I_LCOEF_RRANDIOPS]	=          6946,
 | 
						|
			[I_LCOEF_WBPS]		=     141365009,
 | 
						|
			[I_LCOEF_WSEQIOPS]	=         33716,
 | 
						|
			[I_LCOEF_WRANDIOPS]	=         26796,
 | 
						|
		},
 | 
						|
	},
 | 
						|
	[AUTOP_SSD_DFL] = {
 | 
						|
		.qos				= {
 | 
						|
			[QOS_RLAT]		=         25000, /* 25ms */
 | 
						|
			[QOS_WLAT]		=         25000,
 | 
						|
			[QOS_MIN]		= VRATE_MIN_PPM,
 | 
						|
			[QOS_MAX]		= VRATE_MAX_PPM,
 | 
						|
		},
 | 
						|
		.i_lcoefs			= {
 | 
						|
			[I_LCOEF_RBPS]		=     488636629,
 | 
						|
			[I_LCOEF_RSEQIOPS]	=          8932,
 | 
						|
			[I_LCOEF_RRANDIOPS]	=          8518,
 | 
						|
			[I_LCOEF_WBPS]		=     427891549,
 | 
						|
			[I_LCOEF_WSEQIOPS]	=         28755,
 | 
						|
			[I_LCOEF_WRANDIOPS]	=         21940,
 | 
						|
		},
 | 
						|
		.too_fast_vrate_pct		=           500,
 | 
						|
	},
 | 
						|
	[AUTOP_SSD_FAST] = {
 | 
						|
		.qos				= {
 | 
						|
			[QOS_RLAT]		=          5000, /* 5ms */
 | 
						|
			[QOS_WLAT]		=          5000,
 | 
						|
			[QOS_MIN]		= VRATE_MIN_PPM,
 | 
						|
			[QOS_MAX]		= VRATE_MAX_PPM,
 | 
						|
		},
 | 
						|
		.i_lcoefs			= {
 | 
						|
			[I_LCOEF_RBPS]		=    3102524156LLU,
 | 
						|
			[I_LCOEF_RSEQIOPS]	=        724816,
 | 
						|
			[I_LCOEF_RRANDIOPS]	=        778122,
 | 
						|
			[I_LCOEF_WBPS]		=    1742780862LLU,
 | 
						|
			[I_LCOEF_WSEQIOPS]	=        425702,
 | 
						|
			[I_LCOEF_WRANDIOPS]	=	 443193,
 | 
						|
		},
 | 
						|
		.too_slow_vrate_pct		=            10,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
 | 
						|
 * vtime credit shortage and down on device saturation.
 | 
						|
 */
 | 
						|
static const u32 vrate_adj_pct[] =
 | 
						|
	{ 0, 0, 0, 0,
 | 
						|
	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | 
						|
	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 | 
						|
	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
 | 
						|
 | 
						|
static struct blkcg_policy blkcg_policy_iocost;
 | 
						|
 | 
						|
/* accessors and helpers */
 | 
						|
static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
 | 
						|
{
 | 
						|
	return container_of(rqos, struct ioc, rqos);
 | 
						|
}
 | 
						|
 | 
						|
static struct ioc *q_to_ioc(struct request_queue *q)
 | 
						|
{
 | 
						|
	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
 | 
						|
}
 | 
						|
 | 
						|
static const char __maybe_unused *ioc_name(struct ioc *ioc)
 | 
						|
{
 | 
						|
	struct gendisk *disk = ioc->rqos.disk;
 | 
						|
 | 
						|
	if (!disk)
 | 
						|
		return "<unknown>";
 | 
						|
	return disk->disk_name;
 | 
						|
}
 | 
						|
 | 
						|
static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
 | 
						|
{
 | 
						|
	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
 | 
						|
{
 | 
						|
	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
 | 
						|
}
 | 
						|
 | 
						|
static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
 | 
						|
{
 | 
						|
	return pd_to_blkg(&iocg->pd);
 | 
						|
}
 | 
						|
 | 
						|
static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
 | 
						|
{
 | 
						|
	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
 | 
						|
			    struct ioc_cgrp, cpd);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
 | 
						|
 * weight, the more expensive each IO.  Must round up.
 | 
						|
 */
 | 
						|
static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
 | 
						|
{
 | 
						|
	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The inverse of abs_cost_to_cost().  Must round up.
 | 
						|
 */
 | 
						|
static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
 | 
						|
{
 | 
						|
	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
 | 
						|
}
 | 
						|
 | 
						|
static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
 | 
						|
			    u64 abs_cost, u64 cost)
 | 
						|
{
 | 
						|
	struct iocg_pcpu_stat *gcs;
 | 
						|
 | 
						|
	bio->bi_iocost_cost = cost;
 | 
						|
	atomic64_add(cost, &iocg->vtime);
 | 
						|
 | 
						|
	gcs = get_cpu_ptr(iocg->pcpu_stat);
 | 
						|
	local64_add(abs_cost, &gcs->abs_vusage);
 | 
						|
	put_cpu_ptr(gcs);
 | 
						|
}
 | 
						|
 | 
						|
static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
 | 
						|
{
 | 
						|
	if (lock_ioc) {
 | 
						|
		spin_lock_irqsave(&iocg->ioc->lock, *flags);
 | 
						|
		spin_lock(&iocg->waitq.lock);
 | 
						|
	} else {
 | 
						|
		spin_lock_irqsave(&iocg->waitq.lock, *flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
 | 
						|
{
 | 
						|
	if (unlock_ioc) {
 | 
						|
		spin_unlock(&iocg->waitq.lock);
 | 
						|
		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
 | 
						|
	} else {
 | 
						|
		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/iocost.h>
 | 
						|
 | 
						|
static void ioc_refresh_margins(struct ioc *ioc)
 | 
						|
{
 | 
						|
	struct ioc_margins *margins = &ioc->margins;
 | 
						|
	u32 period_us = ioc->period_us;
 | 
						|
	u64 vrate = ioc->vtime_base_rate;
 | 
						|
 | 
						|
	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
 | 
						|
	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
 | 
						|
	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
 | 
						|
}
 | 
						|
 | 
						|
/* latency Qos params changed, update period_us and all the dependent params */
 | 
						|
static void ioc_refresh_period_us(struct ioc *ioc)
 | 
						|
{
 | 
						|
	u32 ppm, lat, multi, period_us;
 | 
						|
 | 
						|
	lockdep_assert_held(&ioc->lock);
 | 
						|
 | 
						|
	/* pick the higher latency target */
 | 
						|
	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
 | 
						|
		ppm = ioc->params.qos[QOS_RPPM];
 | 
						|
		lat = ioc->params.qos[QOS_RLAT];
 | 
						|
	} else {
 | 
						|
		ppm = ioc->params.qos[QOS_WPPM];
 | 
						|
		lat = ioc->params.qos[QOS_WLAT];
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We want the period to be long enough to contain a healthy number
 | 
						|
	 * of IOs while short enough for granular control.  Define it as a
 | 
						|
	 * multiple of the latency target.  Ideally, the multiplier should
 | 
						|
	 * be scaled according to the percentile so that it would nominally
 | 
						|
	 * contain a certain number of requests.  Let's be simpler and
 | 
						|
	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
 | 
						|
	 */
 | 
						|
	if (ppm)
 | 
						|
		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
 | 
						|
	else
 | 
						|
		multi = 2;
 | 
						|
	period_us = multi * lat;
 | 
						|
	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
 | 
						|
 | 
						|
	/* calculate dependent params */
 | 
						|
	ioc->period_us = period_us;
 | 
						|
	ioc->timer_slack_ns = div64_u64(
 | 
						|
		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
 | 
						|
		100);
 | 
						|
	ioc_refresh_margins(ioc);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  ioc->rqos.disk isn't initialized when this function is called from
 | 
						|
 *  the init path.
 | 
						|
 */
 | 
						|
static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
 | 
						|
{
 | 
						|
	int idx = ioc->autop_idx;
 | 
						|
	const struct ioc_params *p = &autop[idx];
 | 
						|
	u32 vrate_pct;
 | 
						|
	u64 now_ns;
 | 
						|
 | 
						|
	/* rotational? */
 | 
						|
	if (!blk_queue_nonrot(disk->queue))
 | 
						|
		return AUTOP_HDD;
 | 
						|
 | 
						|
	/* handle SATA SSDs w/ broken NCQ */
 | 
						|
	if (blk_queue_depth(disk->queue) == 1)
 | 
						|
		return AUTOP_SSD_QD1;
 | 
						|
 | 
						|
	/* use one of the normal ssd sets */
 | 
						|
	if (idx < AUTOP_SSD_DFL)
 | 
						|
		return AUTOP_SSD_DFL;
 | 
						|
 | 
						|
	/* if user is overriding anything, maintain what was there */
 | 
						|
	if (ioc->user_qos_params || ioc->user_cost_model)
 | 
						|
		return idx;
 | 
						|
 | 
						|
	/* step up/down based on the vrate */
 | 
						|
	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
 | 
						|
	now_ns = blk_time_get_ns();
 | 
						|
 | 
						|
	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
 | 
						|
		if (!ioc->autop_too_fast_at)
 | 
						|
			ioc->autop_too_fast_at = now_ns;
 | 
						|
		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
 | 
						|
			return idx + 1;
 | 
						|
	} else {
 | 
						|
		ioc->autop_too_fast_at = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
 | 
						|
		if (!ioc->autop_too_slow_at)
 | 
						|
			ioc->autop_too_slow_at = now_ns;
 | 
						|
		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
 | 
						|
			return idx - 1;
 | 
						|
	} else {
 | 
						|
		ioc->autop_too_slow_at = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return idx;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Take the followings as input
 | 
						|
 *
 | 
						|
 *  @bps	maximum sequential throughput
 | 
						|
 *  @seqiops	maximum sequential 4k iops
 | 
						|
 *  @randiops	maximum random 4k iops
 | 
						|
 *
 | 
						|
 * and calculate the linear model cost coefficients.
 | 
						|
 *
 | 
						|
 *  *@page	per-page cost		1s / (@bps / 4096)
 | 
						|
 *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
 | 
						|
 *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
 | 
						|
 */
 | 
						|
static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
 | 
						|
			u64 *page, u64 *seqio, u64 *randio)
 | 
						|
{
 | 
						|
	u64 v;
 | 
						|
 | 
						|
	*page = *seqio = *randio = 0;
 | 
						|
 | 
						|
	if (bps) {
 | 
						|
		u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
 | 
						|
 | 
						|
		if (bps_pages)
 | 
						|
			*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
 | 
						|
		else
 | 
						|
			*page = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (seqiops) {
 | 
						|
		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
 | 
						|
		if (v > *page)
 | 
						|
			*seqio = v - *page;
 | 
						|
	}
 | 
						|
 | 
						|
	if (randiops) {
 | 
						|
		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
 | 
						|
		if (v > *page)
 | 
						|
			*randio = v - *page;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_refresh_lcoefs(struct ioc *ioc)
 | 
						|
{
 | 
						|
	u64 *u = ioc->params.i_lcoefs;
 | 
						|
	u64 *c = ioc->params.lcoefs;
 | 
						|
 | 
						|
	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
 | 
						|
		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
 | 
						|
	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
 | 
						|
		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * struct gendisk is required as an argument because ioc->rqos.disk
 | 
						|
 * is not properly initialized when called from the init path.
 | 
						|
 */
 | 
						|
static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
 | 
						|
				    struct gendisk *disk)
 | 
						|
{
 | 
						|
	const struct ioc_params *p;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	lockdep_assert_held(&ioc->lock);
 | 
						|
 | 
						|
	idx = ioc_autop_idx(ioc, disk);
 | 
						|
	p = &autop[idx];
 | 
						|
 | 
						|
	if (idx == ioc->autop_idx && !force)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (idx != ioc->autop_idx) {
 | 
						|
		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
 | 
						|
		ioc->vtime_base_rate = VTIME_PER_USEC;
 | 
						|
	}
 | 
						|
 | 
						|
	ioc->autop_idx = idx;
 | 
						|
	ioc->autop_too_fast_at = 0;
 | 
						|
	ioc->autop_too_slow_at = 0;
 | 
						|
 | 
						|
	if (!ioc->user_qos_params)
 | 
						|
		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
 | 
						|
	if (!ioc->user_cost_model)
 | 
						|
		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
 | 
						|
 | 
						|
	ioc_refresh_period_us(ioc);
 | 
						|
	ioc_refresh_lcoefs(ioc);
 | 
						|
 | 
						|
	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
 | 
						|
					    VTIME_PER_USEC, MILLION);
 | 
						|
	ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
 | 
						|
					    VTIME_PER_USEC, MILLION);
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool ioc_refresh_params(struct ioc *ioc, bool force)
 | 
						|
{
 | 
						|
	return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When an iocg accumulates too much vtime or gets deactivated, we throw away
 | 
						|
 * some vtime, which lowers the overall device utilization. As the exact amount
 | 
						|
 * which is being thrown away is known, we can compensate by accelerating the
 | 
						|
 * vrate accordingly so that the extra vtime generated in the current period
 | 
						|
 * matches what got lost.
 | 
						|
 */
 | 
						|
static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
 | 
						|
{
 | 
						|
	s64 pleft = ioc->period_at + ioc->period_us - now->now;
 | 
						|
	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
 | 
						|
	s64 vcomp, vcomp_min, vcomp_max;
 | 
						|
 | 
						|
	lockdep_assert_held(&ioc->lock);
 | 
						|
 | 
						|
	/* we need some time left in this period */
 | 
						|
	if (pleft <= 0)
 | 
						|
		goto done;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate how much vrate should be adjusted to offset the error.
 | 
						|
	 * Limit the amount of adjustment and deduct the adjusted amount from
 | 
						|
	 * the error.
 | 
						|
	 */
 | 
						|
	vcomp = -div64_s64(ioc->vtime_err, pleft);
 | 
						|
	vcomp_min = -(ioc->vtime_base_rate >> 1);
 | 
						|
	vcomp_max = ioc->vtime_base_rate;
 | 
						|
	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
 | 
						|
 | 
						|
	ioc->vtime_err += vcomp * pleft;
 | 
						|
 | 
						|
	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
 | 
						|
done:
 | 
						|
	/* bound how much error can accumulate */
 | 
						|
	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
 | 
						|
				  int nr_lagging, int nr_shortages,
 | 
						|
				  int prev_busy_level, u32 *missed_ppm)
 | 
						|
{
 | 
						|
	u64 vrate = ioc->vtime_base_rate;
 | 
						|
	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
 | 
						|
 | 
						|
	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
 | 
						|
		if (ioc->busy_level != prev_busy_level || nr_lagging)
 | 
						|
			trace_iocost_ioc_vrate_adj(ioc, vrate,
 | 
						|
						   missed_ppm, rq_wait_pct,
 | 
						|
						   nr_lagging, nr_shortages);
 | 
						|
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If vrate is out of bounds, apply clamp gradually as the
 | 
						|
	 * bounds can change abruptly.  Otherwise, apply busy_level
 | 
						|
	 * based adjustment.
 | 
						|
	 */
 | 
						|
	if (vrate < vrate_min) {
 | 
						|
		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
 | 
						|
		vrate = min(vrate, vrate_min);
 | 
						|
	} else if (vrate > vrate_max) {
 | 
						|
		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
 | 
						|
		vrate = max(vrate, vrate_max);
 | 
						|
	} else {
 | 
						|
		int idx = min_t(int, abs(ioc->busy_level),
 | 
						|
				ARRAY_SIZE(vrate_adj_pct) - 1);
 | 
						|
		u32 adj_pct = vrate_adj_pct[idx];
 | 
						|
 | 
						|
		if (ioc->busy_level > 0)
 | 
						|
			adj_pct = 100 - adj_pct;
 | 
						|
		else
 | 
						|
			adj_pct = 100 + adj_pct;
 | 
						|
 | 
						|
		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
 | 
						|
			      vrate_min, vrate_max);
 | 
						|
	}
 | 
						|
 | 
						|
	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
 | 
						|
				   nr_lagging, nr_shortages);
 | 
						|
 | 
						|
	ioc->vtime_base_rate = vrate;
 | 
						|
	ioc_refresh_margins(ioc);
 | 
						|
}
 | 
						|
 | 
						|
/* take a snapshot of the current [v]time and vrate */
 | 
						|
static void ioc_now(struct ioc *ioc, struct ioc_now *now)
 | 
						|
{
 | 
						|
	unsigned seq;
 | 
						|
	u64 vrate;
 | 
						|
 | 
						|
	now->now_ns = blk_time_get_ns();
 | 
						|
	now->now = ktime_to_us(now->now_ns);
 | 
						|
	vrate = atomic64_read(&ioc->vtime_rate);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The current vtime is
 | 
						|
	 *
 | 
						|
	 *   vtime at period start + (wallclock time since the start) * vrate
 | 
						|
	 *
 | 
						|
	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
 | 
						|
	 * needed, they're seqcount protected.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&ioc->period_seqcount);
 | 
						|
		now->vnow = ioc->period_at_vtime +
 | 
						|
			(now->now - ioc->period_at) * vrate;
 | 
						|
	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
 | 
						|
{
 | 
						|
	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
 | 
						|
 | 
						|
	write_seqcount_begin(&ioc->period_seqcount);
 | 
						|
	ioc->period_at = now->now;
 | 
						|
	ioc->period_at_vtime = now->vnow;
 | 
						|
	write_seqcount_end(&ioc->period_seqcount);
 | 
						|
 | 
						|
	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
 | 
						|
	add_timer(&ioc->timer);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
 | 
						|
 * weight sums and propagate upwards accordingly. If @save, the current margin
 | 
						|
 * is saved to be used as reference for later inuse in-period adjustments.
 | 
						|
 */
 | 
						|
static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
 | 
						|
				bool save, struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	int lvl;
 | 
						|
 | 
						|
	lockdep_assert_held(&ioc->lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For an active leaf node, its inuse shouldn't be zero or exceed
 | 
						|
	 * @active. An active internal node's inuse is solely determined by the
 | 
						|
	 * inuse to active ratio of its children regardless of @inuse.
 | 
						|
	 */
 | 
						|
	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
 | 
						|
		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
 | 
						|
					   iocg->child_active_sum);
 | 
						|
	} else {
 | 
						|
		inuse = clamp_t(u32, inuse, 1, active);
 | 
						|
	}
 | 
						|
 | 
						|
	iocg->last_inuse = iocg->inuse;
 | 
						|
	if (save)
 | 
						|
		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
 | 
						|
 | 
						|
	if (active == iocg->active && inuse == iocg->inuse)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
 | 
						|
		struct ioc_gq *parent = iocg->ancestors[lvl];
 | 
						|
		struct ioc_gq *child = iocg->ancestors[lvl + 1];
 | 
						|
		u32 parent_active = 0, parent_inuse = 0;
 | 
						|
 | 
						|
		/* update the level sums */
 | 
						|
		parent->child_active_sum += (s32)(active - child->active);
 | 
						|
		parent->child_inuse_sum += (s32)(inuse - child->inuse);
 | 
						|
		/* apply the updates */
 | 
						|
		child->active = active;
 | 
						|
		child->inuse = inuse;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The delta between inuse and active sums indicates that
 | 
						|
		 * much of weight is being given away.  Parent's inuse
 | 
						|
		 * and active should reflect the ratio.
 | 
						|
		 */
 | 
						|
		if (parent->child_active_sum) {
 | 
						|
			parent_active = parent->weight;
 | 
						|
			parent_inuse = DIV64_U64_ROUND_UP(
 | 
						|
				parent_active * parent->child_inuse_sum,
 | 
						|
				parent->child_active_sum);
 | 
						|
		}
 | 
						|
 | 
						|
		/* do we need to keep walking up? */
 | 
						|
		if (parent_active == parent->active &&
 | 
						|
		    parent_inuse == parent->inuse)
 | 
						|
			break;
 | 
						|
 | 
						|
		active = parent_active;
 | 
						|
		inuse = parent_inuse;
 | 
						|
	}
 | 
						|
 | 
						|
	ioc->weights_updated = true;
 | 
						|
}
 | 
						|
 | 
						|
static void commit_weights(struct ioc *ioc)
 | 
						|
{
 | 
						|
	lockdep_assert_held(&ioc->lock);
 | 
						|
 | 
						|
	if (ioc->weights_updated) {
 | 
						|
		/* paired with rmb in current_hweight(), see there */
 | 
						|
		smp_wmb();
 | 
						|
		atomic_inc(&ioc->hweight_gen);
 | 
						|
		ioc->weights_updated = false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
 | 
						|
			      bool save, struct ioc_now *now)
 | 
						|
{
 | 
						|
	__propagate_weights(iocg, active, inuse, save, now);
 | 
						|
	commit_weights(iocg->ioc);
 | 
						|
}
 | 
						|
 | 
						|
static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	int lvl;
 | 
						|
	u32 hwa, hwi;
 | 
						|
	int ioc_gen;
 | 
						|
 | 
						|
	/* hot path - if uptodate, use cached */
 | 
						|
	ioc_gen = atomic_read(&ioc->hweight_gen);
 | 
						|
	if (ioc_gen == iocg->hweight_gen)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Paired with wmb in commit_weights(). If we saw the updated
 | 
						|
	 * hweight_gen, all the weight updates from __propagate_weights() are
 | 
						|
	 * visible too.
 | 
						|
	 *
 | 
						|
	 * We can race with weight updates during calculation and get it
 | 
						|
	 * wrong.  However, hweight_gen would have changed and a future
 | 
						|
	 * reader will recalculate and we're guaranteed to discard the
 | 
						|
	 * wrong result soon.
 | 
						|
	 */
 | 
						|
	smp_rmb();
 | 
						|
 | 
						|
	hwa = hwi = WEIGHT_ONE;
 | 
						|
	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
 | 
						|
		struct ioc_gq *parent = iocg->ancestors[lvl];
 | 
						|
		struct ioc_gq *child = iocg->ancestors[lvl + 1];
 | 
						|
		u64 active_sum = READ_ONCE(parent->child_active_sum);
 | 
						|
		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
 | 
						|
		u32 active = READ_ONCE(child->active);
 | 
						|
		u32 inuse = READ_ONCE(child->inuse);
 | 
						|
 | 
						|
		/* we can race with deactivations and either may read as zero */
 | 
						|
		if (!active_sum || !inuse_sum)
 | 
						|
			continue;
 | 
						|
 | 
						|
		active_sum = max_t(u64, active, active_sum);
 | 
						|
		hwa = div64_u64((u64)hwa * active, active_sum);
 | 
						|
 | 
						|
		inuse_sum = max_t(u64, inuse, inuse_sum);
 | 
						|
		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
 | 
						|
	}
 | 
						|
 | 
						|
	iocg->hweight_active = max_t(u32, hwa, 1);
 | 
						|
	iocg->hweight_inuse = max_t(u32, hwi, 1);
 | 
						|
	iocg->hweight_gen = ioc_gen;
 | 
						|
out:
 | 
						|
	if (hw_activep)
 | 
						|
		*hw_activep = iocg->hweight_active;
 | 
						|
	if (hw_inusep)
 | 
						|
		*hw_inusep = iocg->hweight_inuse;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
 | 
						|
 * other weights stay unchanged.
 | 
						|
 */
 | 
						|
static u32 current_hweight_max(struct ioc_gq *iocg)
 | 
						|
{
 | 
						|
	u32 hwm = WEIGHT_ONE;
 | 
						|
	u32 inuse = iocg->active;
 | 
						|
	u64 child_inuse_sum;
 | 
						|
	int lvl;
 | 
						|
 | 
						|
	lockdep_assert_held(&iocg->ioc->lock);
 | 
						|
 | 
						|
	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
 | 
						|
		struct ioc_gq *parent = iocg->ancestors[lvl];
 | 
						|
		struct ioc_gq *child = iocg->ancestors[lvl + 1];
 | 
						|
 | 
						|
		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
 | 
						|
		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
 | 
						|
		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
 | 
						|
					   parent->child_active_sum);
 | 
						|
	}
 | 
						|
 | 
						|
	return max_t(u32, hwm, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
 | 
						|
	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
 | 
						|
	u32 weight;
 | 
						|
 | 
						|
	lockdep_assert_held(&ioc->lock);
 | 
						|
 | 
						|
	weight = iocg->cfg_weight ?: iocc->dfl_weight;
 | 
						|
	if (weight != iocg->weight && iocg->active)
 | 
						|
		propagate_weights(iocg, weight, iocg->inuse, true, now);
 | 
						|
	iocg->weight = weight;
 | 
						|
}
 | 
						|
 | 
						|
static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	u64 __maybe_unused last_period, cur_period;
 | 
						|
	u64 vtime, vtarget;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If seem to be already active, just update the stamp to tell the
 | 
						|
	 * timer that we're still active.  We don't mind occassional races.
 | 
						|
	 */
 | 
						|
	if (!list_empty(&iocg->active_list)) {
 | 
						|
		ioc_now(ioc, now);
 | 
						|
		cur_period = atomic64_read(&ioc->cur_period);
 | 
						|
		if (atomic64_read(&iocg->active_period) != cur_period)
 | 
						|
			atomic64_set(&iocg->active_period, cur_period);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	/* racy check on internal node IOs, treat as root level IOs */
 | 
						|
	if (iocg->child_active_sum)
 | 
						|
		return false;
 | 
						|
 | 
						|
	spin_lock_irq(&ioc->lock);
 | 
						|
 | 
						|
	ioc_now(ioc, now);
 | 
						|
 | 
						|
	/* update period */
 | 
						|
	cur_period = atomic64_read(&ioc->cur_period);
 | 
						|
	last_period = atomic64_read(&iocg->active_period);
 | 
						|
	atomic64_set(&iocg->active_period, cur_period);
 | 
						|
 | 
						|
	/* already activated or breaking leaf-only constraint? */
 | 
						|
	if (!list_empty(&iocg->active_list))
 | 
						|
		goto succeed_unlock;
 | 
						|
	for (i = iocg->level - 1; i > 0; i--)
 | 
						|
		if (!list_empty(&iocg->ancestors[i]->active_list))
 | 
						|
			goto fail_unlock;
 | 
						|
 | 
						|
	if (iocg->child_active_sum)
 | 
						|
		goto fail_unlock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always start with the target budget. On deactivation, we throw away
 | 
						|
	 * anything above it.
 | 
						|
	 */
 | 
						|
	vtarget = now->vnow - ioc->margins.target;
 | 
						|
	vtime = atomic64_read(&iocg->vtime);
 | 
						|
 | 
						|
	atomic64_add(vtarget - vtime, &iocg->vtime);
 | 
						|
	atomic64_add(vtarget - vtime, &iocg->done_vtime);
 | 
						|
	vtime = vtarget;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Activate, propagate weight and start period timer if not
 | 
						|
	 * running.  Reset hweight_gen to avoid accidental match from
 | 
						|
	 * wrapping.
 | 
						|
	 */
 | 
						|
	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
 | 
						|
	list_add(&iocg->active_list, &ioc->active_iocgs);
 | 
						|
 | 
						|
	propagate_weights(iocg, iocg->weight,
 | 
						|
			  iocg->last_inuse ?: iocg->weight, true, now);
 | 
						|
 | 
						|
	TRACE_IOCG_PATH(iocg_activate, iocg, now,
 | 
						|
			last_period, cur_period, vtime);
 | 
						|
 | 
						|
	iocg->activated_at = now->now;
 | 
						|
 | 
						|
	if (ioc->running == IOC_IDLE) {
 | 
						|
		ioc->running = IOC_RUNNING;
 | 
						|
		ioc->dfgv_period_at = now->now;
 | 
						|
		ioc->dfgv_period_rem = 0;
 | 
						|
		ioc_start_period(ioc, now);
 | 
						|
	}
 | 
						|
 | 
						|
succeed_unlock:
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
	return true;
 | 
						|
 | 
						|
fail_unlock:
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
 | 
						|
	u64 tdelta, delay, new_delay, shift;
 | 
						|
	s64 vover, vover_pct;
 | 
						|
	u32 hwa;
 | 
						|
 | 
						|
	lockdep_assert_held(&iocg->waitq.lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the delay is set by another CPU, we may be in the past. No need to
 | 
						|
	 * change anything if so. This avoids decay calculation underflow.
 | 
						|
	 */
 | 
						|
	if (time_before64(now->now, iocg->delay_at))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* calculate the current delay in effect - 1/2 every second */
 | 
						|
	tdelta = now->now - iocg->delay_at;
 | 
						|
	shift = div64_u64(tdelta, USEC_PER_SEC);
 | 
						|
	if (iocg->delay && shift < BITS_PER_LONG)
 | 
						|
		delay = iocg->delay >> shift;
 | 
						|
	else
 | 
						|
		delay = 0;
 | 
						|
 | 
						|
	/* calculate the new delay from the debt amount */
 | 
						|
	current_hweight(iocg, &hwa, NULL);
 | 
						|
	vover = atomic64_read(&iocg->vtime) +
 | 
						|
		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
 | 
						|
	vover_pct = div64_s64(100 * vover,
 | 
						|
			      ioc->period_us * ioc->vtime_base_rate);
 | 
						|
 | 
						|
	if (vover_pct <= MIN_DELAY_THR_PCT)
 | 
						|
		new_delay = 0;
 | 
						|
	else if (vover_pct >= MAX_DELAY_THR_PCT)
 | 
						|
		new_delay = MAX_DELAY;
 | 
						|
	else
 | 
						|
		new_delay = MIN_DELAY +
 | 
						|
			div_u64((MAX_DELAY - MIN_DELAY) *
 | 
						|
				(vover_pct - MIN_DELAY_THR_PCT),
 | 
						|
				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
 | 
						|
 | 
						|
	/* pick the higher one and apply */
 | 
						|
	if (new_delay > delay) {
 | 
						|
		iocg->delay = new_delay;
 | 
						|
		iocg->delay_at = now->now;
 | 
						|
		delay = new_delay;
 | 
						|
	}
 | 
						|
 | 
						|
	if (delay >= MIN_DELAY) {
 | 
						|
		if (!iocg->indelay_since)
 | 
						|
			iocg->indelay_since = now->now;
 | 
						|
		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
 | 
						|
		return true;
 | 
						|
	} else {
 | 
						|
		if (iocg->indelay_since) {
 | 
						|
			iocg->stat.indelay_us += now->now - iocg->indelay_since;
 | 
						|
			iocg->indelay_since = 0;
 | 
						|
		}
 | 
						|
		iocg->delay = 0;
 | 
						|
		blkcg_clear_delay(blkg);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
 | 
						|
			    struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct iocg_pcpu_stat *gcs;
 | 
						|
 | 
						|
	lockdep_assert_held(&iocg->ioc->lock);
 | 
						|
	lockdep_assert_held(&iocg->waitq.lock);
 | 
						|
	WARN_ON_ONCE(list_empty(&iocg->active_list));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
 | 
						|
	 * inuse donating all of it share to others until its debt is paid off.
 | 
						|
	 */
 | 
						|
	if (!iocg->abs_vdebt && abs_cost) {
 | 
						|
		iocg->indebt_since = now->now;
 | 
						|
		propagate_weights(iocg, iocg->active, 0, false, now);
 | 
						|
	}
 | 
						|
 | 
						|
	iocg->abs_vdebt += abs_cost;
 | 
						|
 | 
						|
	gcs = get_cpu_ptr(iocg->pcpu_stat);
 | 
						|
	local64_add(abs_cost, &gcs->abs_vusage);
 | 
						|
	put_cpu_ptr(gcs);
 | 
						|
}
 | 
						|
 | 
						|
static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
 | 
						|
			  struct ioc_now *now)
 | 
						|
{
 | 
						|
	lockdep_assert_held(&iocg->ioc->lock);
 | 
						|
	lockdep_assert_held(&iocg->waitq.lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * make sure that nobody messed with @iocg. Check iocg->pd.online
 | 
						|
	 * to avoid warn when removing blkcg or disk.
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online);
 | 
						|
	WARN_ON_ONCE(iocg->inuse > 1);
 | 
						|
 | 
						|
	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
 | 
						|
 | 
						|
	/* if debt is paid in full, restore inuse */
 | 
						|
	if (!iocg->abs_vdebt) {
 | 
						|
		iocg->stat.indebt_us += now->now - iocg->indebt_since;
 | 
						|
		iocg->indebt_since = 0;
 | 
						|
 | 
						|
		propagate_weights(iocg, iocg->active, iocg->last_inuse,
 | 
						|
				  false, now);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
 | 
						|
			int flags, void *key)
 | 
						|
{
 | 
						|
	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
 | 
						|
	struct iocg_wake_ctx *ctx = key;
 | 
						|
	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
 | 
						|
 | 
						|
	ctx->vbudget -= cost;
 | 
						|
 | 
						|
	if (ctx->vbudget < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
 | 
						|
	wait->committed = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * autoremove_wake_function() removes the wait entry only when it
 | 
						|
	 * actually changed the task state. We want the wait always removed.
 | 
						|
	 * Remove explicitly and use default_wake_function(). Note that the
 | 
						|
	 * order of operations is important as finish_wait() tests whether
 | 
						|
	 * @wq_entry is removed without grabbing the lock.
 | 
						|
	 */
 | 
						|
	default_wake_function(wq_entry, mode, flags, key);
 | 
						|
	list_del_init_careful(&wq_entry->entry);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
 | 
						|
 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
 | 
						|
 * addition to iocg->waitq.lock.
 | 
						|
 */
 | 
						|
static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
 | 
						|
			    struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	struct iocg_wake_ctx ctx = { .iocg = iocg };
 | 
						|
	u64 vshortage, expires, oexpires;
 | 
						|
	s64 vbudget;
 | 
						|
	u32 hwa;
 | 
						|
 | 
						|
	lockdep_assert_held(&iocg->waitq.lock);
 | 
						|
 | 
						|
	current_hweight(iocg, &hwa, NULL);
 | 
						|
	vbudget = now->vnow - atomic64_read(&iocg->vtime);
 | 
						|
 | 
						|
	/* pay off debt */
 | 
						|
	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
 | 
						|
		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
 | 
						|
		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
 | 
						|
		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
 | 
						|
 | 
						|
		lockdep_assert_held(&ioc->lock);
 | 
						|
 | 
						|
		atomic64_add(vpay, &iocg->vtime);
 | 
						|
		atomic64_add(vpay, &iocg->done_vtime);
 | 
						|
		iocg_pay_debt(iocg, abs_vpay, now);
 | 
						|
		vbudget -= vpay;
 | 
						|
	}
 | 
						|
 | 
						|
	if (iocg->abs_vdebt || iocg->delay)
 | 
						|
		iocg_kick_delay(iocg, now);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Debt can still be outstanding if we haven't paid all yet or the
 | 
						|
	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
 | 
						|
	 * under debt. Make sure @vbudget reflects the outstanding amount and is
 | 
						|
	 * not positive.
 | 
						|
	 */
 | 
						|
	if (iocg->abs_vdebt) {
 | 
						|
		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
 | 
						|
		vbudget = min_t(s64, 0, vbudget - vdebt);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wake up the ones which are due and see how much vtime we'll need for
 | 
						|
	 * the next one. As paying off debt restores hw_inuse, it must be read
 | 
						|
	 * after the above debt payment.
 | 
						|
	 */
 | 
						|
	ctx.vbudget = vbudget;
 | 
						|
	current_hweight(iocg, NULL, &ctx.hw_inuse);
 | 
						|
 | 
						|
	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
 | 
						|
 | 
						|
	if (!waitqueue_active(&iocg->waitq)) {
 | 
						|
		if (iocg->wait_since) {
 | 
						|
			iocg->stat.wait_us += now->now - iocg->wait_since;
 | 
						|
			iocg->wait_since = 0;
 | 
						|
		}
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!iocg->wait_since)
 | 
						|
		iocg->wait_since = now->now;
 | 
						|
 | 
						|
	if (WARN_ON_ONCE(ctx.vbudget >= 0))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* determine next wakeup, add a timer margin to guarantee chunking */
 | 
						|
	vshortage = -ctx.vbudget;
 | 
						|
	expires = now->now_ns +
 | 
						|
		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
 | 
						|
		NSEC_PER_USEC;
 | 
						|
	expires += ioc->timer_slack_ns;
 | 
						|
 | 
						|
	/* if already active and close enough, don't bother */
 | 
						|
	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
 | 
						|
	if (hrtimer_is_queued(&iocg->waitq_timer) &&
 | 
						|
	    abs(oexpires - expires) <= ioc->timer_slack_ns)
 | 
						|
		return;
 | 
						|
 | 
						|
	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
 | 
						|
			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
 | 
						|
}
 | 
						|
 | 
						|
static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
 | 
						|
{
 | 
						|
	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
 | 
						|
	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
 | 
						|
	struct ioc_now now;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	ioc_now(iocg->ioc, &now);
 | 
						|
 | 
						|
	iocg_lock(iocg, pay_debt, &flags);
 | 
						|
	iocg_kick_waitq(iocg, pay_debt, &now);
 | 
						|
	iocg_unlock(iocg, pay_debt, &flags);
 | 
						|
 | 
						|
	return HRTIMER_NORESTART;
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
 | 
						|
{
 | 
						|
	u32 nr_met[2] = { };
 | 
						|
	u32 nr_missed[2] = { };
 | 
						|
	u64 rq_wait_ns = 0;
 | 
						|
	int cpu, rw;
 | 
						|
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
 | 
						|
		u64 this_rq_wait_ns;
 | 
						|
 | 
						|
		for (rw = READ; rw <= WRITE; rw++) {
 | 
						|
			u32 this_met = local_read(&stat->missed[rw].nr_met);
 | 
						|
			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
 | 
						|
 | 
						|
			nr_met[rw] += this_met - stat->missed[rw].last_met;
 | 
						|
			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
 | 
						|
			stat->missed[rw].last_met = this_met;
 | 
						|
			stat->missed[rw].last_missed = this_missed;
 | 
						|
		}
 | 
						|
 | 
						|
		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
 | 
						|
		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
 | 
						|
		stat->last_rq_wait_ns = this_rq_wait_ns;
 | 
						|
	}
 | 
						|
 | 
						|
	for (rw = READ; rw <= WRITE; rw++) {
 | 
						|
		if (nr_met[rw] + nr_missed[rw])
 | 
						|
			missed_ppm_ar[rw] =
 | 
						|
				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
 | 
						|
						   nr_met[rw] + nr_missed[rw]);
 | 
						|
		else
 | 
						|
			missed_ppm_ar[rw] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
 | 
						|
				   ioc->period_us * NSEC_PER_USEC);
 | 
						|
}
 | 
						|
 | 
						|
/* was iocg idle this period? */
 | 
						|
static bool iocg_is_idle(struct ioc_gq *iocg)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
 | 
						|
	/* did something get issued this period? */
 | 
						|
	if (atomic64_read(&iocg->active_period) ==
 | 
						|
	    atomic64_read(&ioc->cur_period))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* is something in flight? */
 | 
						|
	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Call this function on the target leaf @iocg's to build pre-order traversal
 | 
						|
 * list of all the ancestors in @inner_walk. The inner nodes are linked through
 | 
						|
 * ->walk_list and the caller is responsible for dissolving the list after use.
 | 
						|
 */
 | 
						|
static void iocg_build_inner_walk(struct ioc_gq *iocg,
 | 
						|
				  struct list_head *inner_walk)
 | 
						|
{
 | 
						|
	int lvl;
 | 
						|
 | 
						|
	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
 | 
						|
 | 
						|
	/* find the first ancestor which hasn't been visited yet */
 | 
						|
	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
 | 
						|
		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* walk down and visit the inner nodes to get pre-order traversal */
 | 
						|
	while (++lvl <= iocg->level - 1) {
 | 
						|
		struct ioc_gq *inner = iocg->ancestors[lvl];
 | 
						|
 | 
						|
		/* record traversal order */
 | 
						|
		list_add_tail(&inner->walk_list, inner_walk);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* propagate the deltas to the parent */
 | 
						|
static void iocg_flush_stat_upward(struct ioc_gq *iocg)
 | 
						|
{
 | 
						|
	if (iocg->level > 0) {
 | 
						|
		struct iocg_stat *parent_stat =
 | 
						|
			&iocg->ancestors[iocg->level - 1]->stat;
 | 
						|
 | 
						|
		parent_stat->usage_us +=
 | 
						|
			iocg->stat.usage_us - iocg->last_stat.usage_us;
 | 
						|
		parent_stat->wait_us +=
 | 
						|
			iocg->stat.wait_us - iocg->last_stat.wait_us;
 | 
						|
		parent_stat->indebt_us +=
 | 
						|
			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
 | 
						|
		parent_stat->indelay_us +=
 | 
						|
			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
 | 
						|
	}
 | 
						|
 | 
						|
	iocg->last_stat = iocg->stat;
 | 
						|
}
 | 
						|
 | 
						|
/* collect per-cpu counters and propagate the deltas to the parent */
 | 
						|
static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	u64 abs_vusage = 0;
 | 
						|
	u64 vusage_delta;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	lockdep_assert_held(&iocg->ioc->lock);
 | 
						|
 | 
						|
	/* collect per-cpu counters */
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		abs_vusage += local64_read(
 | 
						|
				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
 | 
						|
	}
 | 
						|
	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
 | 
						|
	iocg->last_stat_abs_vusage = abs_vusage;
 | 
						|
 | 
						|
	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
 | 
						|
	iocg->stat.usage_us += iocg->usage_delta_us;
 | 
						|
 | 
						|
	iocg_flush_stat_upward(iocg);
 | 
						|
}
 | 
						|
 | 
						|
/* get stat counters ready for reading on all active iocgs */
 | 
						|
static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
 | 
						|
{
 | 
						|
	LIST_HEAD(inner_walk);
 | 
						|
	struct ioc_gq *iocg, *tiocg;
 | 
						|
 | 
						|
	/* flush leaves and build inner node walk list */
 | 
						|
	list_for_each_entry(iocg, target_iocgs, active_list) {
 | 
						|
		iocg_flush_stat_leaf(iocg, now);
 | 
						|
		iocg_build_inner_walk(iocg, &inner_walk);
 | 
						|
	}
 | 
						|
 | 
						|
	/* keep flushing upwards by walking the inner list backwards */
 | 
						|
	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
 | 
						|
		iocg_flush_stat_upward(iocg);
 | 
						|
		list_del_init(&iocg->walk_list);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine what @iocg's hweight_inuse should be after donating unused
 | 
						|
 * capacity. @hwm is the upper bound and used to signal no donation. This
 | 
						|
 * function also throws away @iocg's excess budget.
 | 
						|
 */
 | 
						|
static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
 | 
						|
				  u32 usage, struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	u64 vtime = atomic64_read(&iocg->vtime);
 | 
						|
	s64 excess, delta, target, new_hwi;
 | 
						|
 | 
						|
	/* debt handling owns inuse for debtors */
 | 
						|
	if (iocg->abs_vdebt)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* see whether minimum margin requirement is met */
 | 
						|
	if (waitqueue_active(&iocg->waitq) ||
 | 
						|
	    time_after64(vtime, now->vnow - ioc->margins.min))
 | 
						|
		return hwm;
 | 
						|
 | 
						|
	/* throw away excess above target */
 | 
						|
	excess = now->vnow - vtime - ioc->margins.target;
 | 
						|
	if (excess > 0) {
 | 
						|
		atomic64_add(excess, &iocg->vtime);
 | 
						|
		atomic64_add(excess, &iocg->done_vtime);
 | 
						|
		vtime += excess;
 | 
						|
		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Let's say the distance between iocg's and device's vtimes as a
 | 
						|
	 * fraction of period duration is delta. Assuming that the iocg will
 | 
						|
	 * consume the usage determined above, we want to determine new_hwi so
 | 
						|
	 * that delta equals MARGIN_TARGET at the end of the next period.
 | 
						|
	 *
 | 
						|
	 * We need to execute usage worth of IOs while spending the sum of the
 | 
						|
	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
 | 
						|
	 * (delta):
 | 
						|
	 *
 | 
						|
	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
 | 
						|
	 *
 | 
						|
	 * Therefore, the new_hwi is:
 | 
						|
	 *
 | 
						|
	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
 | 
						|
	 */
 | 
						|
	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
 | 
						|
			  now->vnow - ioc->period_at_vtime);
 | 
						|
	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
 | 
						|
	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
 | 
						|
 | 
						|
	return clamp_t(s64, new_hwi, 1, hwm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For work-conservation, an iocg which isn't using all of its share should
 | 
						|
 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
 | 
						|
 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
 | 
						|
 *
 | 
						|
 * #1 is mathematically simpler but has the drawback of requiring synchronous
 | 
						|
 * global hweight_inuse updates when idle iocg's get activated or inuse weights
 | 
						|
 * change due to donation snapbacks as it has the possibility of grossly
 | 
						|
 * overshooting what's allowed by the model and vrate.
 | 
						|
 *
 | 
						|
 * #2 is inherently safe with local operations. The donating iocg can easily
 | 
						|
 * snap back to higher weights when needed without worrying about impacts on
 | 
						|
 * other nodes as the impacts will be inherently correct. This also makes idle
 | 
						|
 * iocg activations safe. The only effect activations have is decreasing
 | 
						|
 * hweight_inuse of others, the right solution to which is for those iocgs to
 | 
						|
 * snap back to higher weights.
 | 
						|
 *
 | 
						|
 * So, we go with #2. The challenge is calculating how each donating iocg's
 | 
						|
 * inuse should be adjusted to achieve the target donation amounts. This is done
 | 
						|
 * using Andy's method described in the following pdf.
 | 
						|
 *
 | 
						|
 *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
 | 
						|
 *
 | 
						|
 * Given the weights and target after-donation hweight_inuse values, Andy's
 | 
						|
 * method determines how the proportional distribution should look like at each
 | 
						|
 * sibling level to maintain the relative relationship between all non-donating
 | 
						|
 * pairs. To roughly summarize, it divides the tree into donating and
 | 
						|
 * non-donating parts, calculates global donation rate which is used to
 | 
						|
 * determine the target hweight_inuse for each node, and then derives per-level
 | 
						|
 * proportions.
 | 
						|
 *
 | 
						|
 * The following pdf shows that global distribution calculated this way can be
 | 
						|
 * achieved by scaling inuse weights of donating leaves and propagating the
 | 
						|
 * adjustments upwards proportionally.
 | 
						|
 *
 | 
						|
 *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
 | 
						|
 *
 | 
						|
 * Combining the above two, we can determine how each leaf iocg's inuse should
 | 
						|
 * be adjusted to achieve the target donation.
 | 
						|
 *
 | 
						|
 *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
 | 
						|
 *
 | 
						|
 * The inline comments use symbols from the last pdf.
 | 
						|
 *
 | 
						|
 *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
 | 
						|
 *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
 | 
						|
 *   t is the sum of the absolute budgets of donating nodes in the subtree.
 | 
						|
 *   w is the weight of the node. w = w_f + w_t
 | 
						|
 *   w_f is the non-donating portion of w. w_f = w * f / b
 | 
						|
 *   w_b is the donating portion of w. w_t = w * t / b
 | 
						|
 *   s is the sum of all sibling weights. s = Sum(w) for siblings
 | 
						|
 *   s_f and s_t are the non-donating and donating portions of s.
 | 
						|
 *
 | 
						|
 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
 | 
						|
 * w_pt is the donating portion of the parent's weight and w'_pt the same value
 | 
						|
 * after adjustments. Subscript r denotes the root node's values.
 | 
						|
 */
 | 
						|
static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
 | 
						|
{
 | 
						|
	LIST_HEAD(over_hwa);
 | 
						|
	LIST_HEAD(inner_walk);
 | 
						|
	struct ioc_gq *iocg, *tiocg, *root_iocg;
 | 
						|
	u32 after_sum, over_sum, over_target, gamma;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It's pretty unlikely but possible for the total sum of
 | 
						|
	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
 | 
						|
	 * confuse the following calculations. If such condition is detected,
 | 
						|
	 * scale down everyone over its full share equally to keep the sum below
 | 
						|
	 * WEIGHT_ONE.
 | 
						|
	 */
 | 
						|
	after_sum = 0;
 | 
						|
	over_sum = 0;
 | 
						|
	list_for_each_entry(iocg, surpluses, surplus_list) {
 | 
						|
		u32 hwa;
 | 
						|
 | 
						|
		current_hweight(iocg, &hwa, NULL);
 | 
						|
		after_sum += iocg->hweight_after_donation;
 | 
						|
 | 
						|
		if (iocg->hweight_after_donation > hwa) {
 | 
						|
			over_sum += iocg->hweight_after_donation;
 | 
						|
			list_add(&iocg->walk_list, &over_hwa);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (after_sum >= WEIGHT_ONE) {
 | 
						|
		/*
 | 
						|
		 * The delta should be deducted from the over_sum, calculate
 | 
						|
		 * target over_sum value.
 | 
						|
		 */
 | 
						|
		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
 | 
						|
		WARN_ON_ONCE(over_sum <= over_delta);
 | 
						|
		over_target = over_sum - over_delta;
 | 
						|
	} else {
 | 
						|
		over_target = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
 | 
						|
		if (over_target)
 | 
						|
			iocg->hweight_after_donation =
 | 
						|
				div_u64((u64)iocg->hweight_after_donation *
 | 
						|
					over_target, over_sum);
 | 
						|
		list_del_init(&iocg->walk_list);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Build pre-order inner node walk list and prepare for donation
 | 
						|
	 * adjustment calculations.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(iocg, surpluses, surplus_list) {
 | 
						|
		iocg_build_inner_walk(iocg, &inner_walk);
 | 
						|
	}
 | 
						|
 | 
						|
	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
 | 
						|
	WARN_ON_ONCE(root_iocg->level > 0);
 | 
						|
 | 
						|
	list_for_each_entry(iocg, &inner_walk, walk_list) {
 | 
						|
		iocg->child_adjusted_sum = 0;
 | 
						|
		iocg->hweight_donating = 0;
 | 
						|
		iocg->hweight_after_donation = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
 | 
						|
	 * up the hierarchy.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(iocg, surpluses, surplus_list) {
 | 
						|
		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
 | 
						|
 | 
						|
		parent->hweight_donating += iocg->hweight_donating;
 | 
						|
		parent->hweight_after_donation += iocg->hweight_after_donation;
 | 
						|
	}
 | 
						|
 | 
						|
	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
 | 
						|
		if (iocg->level > 0) {
 | 
						|
			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
 | 
						|
 | 
						|
			parent->hweight_donating += iocg->hweight_donating;
 | 
						|
			parent->hweight_after_donation += iocg->hweight_after_donation;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate inner hwa's (b) and make sure the donation values are
 | 
						|
	 * within the accepted ranges as we're doing low res calculations with
 | 
						|
	 * roundups.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(iocg, &inner_walk, walk_list) {
 | 
						|
		if (iocg->level) {
 | 
						|
			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
 | 
						|
 | 
						|
			iocg->hweight_active = DIV64_U64_ROUND_UP(
 | 
						|
				(u64)parent->hweight_active * iocg->active,
 | 
						|
				parent->child_active_sum);
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
		iocg->hweight_donating = min(iocg->hweight_donating,
 | 
						|
					     iocg->hweight_active);
 | 
						|
		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
 | 
						|
						   iocg->hweight_donating - 1);
 | 
						|
		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
 | 
						|
				 iocg->hweight_donating <= 1 ||
 | 
						|
				 iocg->hweight_after_donation == 0)) {
 | 
						|
			pr_warn("iocg: invalid donation weights in ");
 | 
						|
			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
 | 
						|
			pr_cont(": active=%u donating=%u after=%u\n",
 | 
						|
				iocg->hweight_active, iocg->hweight_donating,
 | 
						|
				iocg->hweight_after_donation);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate the global donation rate (gamma) - the rate to adjust
 | 
						|
	 * non-donating budgets by.
 | 
						|
	 *
 | 
						|
	 * No need to use 64bit multiplication here as the first operand is
 | 
						|
	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
 | 
						|
	 *
 | 
						|
	 * We know that there are beneficiary nodes and the sum of the donating
 | 
						|
	 * hweights can't be whole; however, due to the round-ups during hweight
 | 
						|
	 * calculations, root_iocg->hweight_donating might still end up equal to
 | 
						|
	 * or greater than whole. Limit the range when calculating the divider.
 | 
						|
	 *
 | 
						|
	 * gamma = (1 - t_r') / (1 - t_r)
 | 
						|
	 */
 | 
						|
	gamma = DIV_ROUND_UP(
 | 
						|
		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
 | 
						|
		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
 | 
						|
	 * nodes.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(iocg, &inner_walk, walk_list) {
 | 
						|
		struct ioc_gq *parent;
 | 
						|
		u32 inuse, wpt, wptp;
 | 
						|
		u64 st, sf;
 | 
						|
 | 
						|
		if (iocg->level == 0) {
 | 
						|
			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
 | 
						|
			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
 | 
						|
				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
 | 
						|
				WEIGHT_ONE - iocg->hweight_after_donation);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		parent = iocg->ancestors[iocg->level - 1];
 | 
						|
 | 
						|
		/* b' = gamma * b_f + b_t' */
 | 
						|
		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
 | 
						|
			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
 | 
						|
			WEIGHT_ONE) + iocg->hweight_after_donation;
 | 
						|
 | 
						|
		/* w' = s' * b' / b'_p */
 | 
						|
		inuse = DIV64_U64_ROUND_UP(
 | 
						|
			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
 | 
						|
			parent->hweight_inuse);
 | 
						|
 | 
						|
		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
 | 
						|
		st = DIV64_U64_ROUND_UP(
 | 
						|
			iocg->child_active_sum * iocg->hweight_donating,
 | 
						|
			iocg->hweight_active);
 | 
						|
		sf = iocg->child_active_sum - st;
 | 
						|
		wpt = DIV64_U64_ROUND_UP(
 | 
						|
			(u64)iocg->active * iocg->hweight_donating,
 | 
						|
			iocg->hweight_active);
 | 
						|
		wptp = DIV64_U64_ROUND_UP(
 | 
						|
			(u64)inuse * iocg->hweight_after_donation,
 | 
						|
			iocg->hweight_inuse);
 | 
						|
 | 
						|
		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
 | 
						|
	 * we can finally determine leaf adjustments.
 | 
						|
	 */
 | 
						|
	list_for_each_entry(iocg, surpluses, surplus_list) {
 | 
						|
		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
 | 
						|
		u32 inuse;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In-debt iocgs participated in the donation calculation with
 | 
						|
		 * the minimum target hweight_inuse. Configuring inuse
 | 
						|
		 * accordingly would work fine but debt handling expects
 | 
						|
		 * @iocg->inuse stay at the minimum and we don't wanna
 | 
						|
		 * interfere.
 | 
						|
		 */
 | 
						|
		if (iocg->abs_vdebt) {
 | 
						|
			WARN_ON_ONCE(iocg->inuse > 1);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
 | 
						|
		inuse = DIV64_U64_ROUND_UP(
 | 
						|
			parent->child_adjusted_sum * iocg->hweight_after_donation,
 | 
						|
			parent->hweight_inuse);
 | 
						|
 | 
						|
		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
 | 
						|
				iocg->inuse, inuse,
 | 
						|
				iocg->hweight_inuse,
 | 
						|
				iocg->hweight_after_donation);
 | 
						|
 | 
						|
		__propagate_weights(iocg, iocg->active, inuse, true, now);
 | 
						|
	}
 | 
						|
 | 
						|
	/* walk list should be dissolved after use */
 | 
						|
	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
 | 
						|
		list_del_init(&iocg->walk_list);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A low weight iocg can amass a large amount of debt, for example, when
 | 
						|
 * anonymous memory gets reclaimed aggressively. If the system has a lot of
 | 
						|
 * memory paired with a slow IO device, the debt can span multiple seconds or
 | 
						|
 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
 | 
						|
 * up blocked paying its debt while the IO device is idle.
 | 
						|
 *
 | 
						|
 * The following protects against such cases. If the device has been
 | 
						|
 * sufficiently idle for a while, the debts are halved and delays are
 | 
						|
 * recalculated.
 | 
						|
 */
 | 
						|
static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
 | 
						|
			      struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc_gq *iocg;
 | 
						|
	u64 dur, usage_pct, nr_cycles, nr_cycles_shift;
 | 
						|
 | 
						|
	/* if no debtor, reset the cycle */
 | 
						|
	if (!nr_debtors) {
 | 
						|
		ioc->dfgv_period_at = now->now;
 | 
						|
		ioc->dfgv_period_rem = 0;
 | 
						|
		ioc->dfgv_usage_us_sum = 0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Debtors can pass through a lot of writes choking the device and we
 | 
						|
	 * don't want to be forgiving debts while the device is struggling from
 | 
						|
	 * write bursts. If we're missing latency targets, consider the device
 | 
						|
	 * fully utilized.
 | 
						|
	 */
 | 
						|
	if (ioc->busy_level > 0)
 | 
						|
		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
 | 
						|
 | 
						|
	ioc->dfgv_usage_us_sum += usage_us_sum;
 | 
						|
	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At least DFGV_PERIOD has passed since the last period. Calculate the
 | 
						|
	 * average usage and reset the period counters.
 | 
						|
	 */
 | 
						|
	dur = now->now - ioc->dfgv_period_at;
 | 
						|
	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
 | 
						|
 | 
						|
	ioc->dfgv_period_at = now->now;
 | 
						|
	ioc->dfgv_usage_us_sum = 0;
 | 
						|
 | 
						|
	/* if was too busy, reset everything */
 | 
						|
	if (usage_pct > DFGV_USAGE_PCT) {
 | 
						|
		ioc->dfgv_period_rem = 0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Usage is lower than threshold. Let's forgive some debts. Debt
 | 
						|
	 * forgiveness runs off of the usual ioc timer but its period usually
 | 
						|
	 * doesn't match ioc's. Compensate the difference by performing the
 | 
						|
	 * reduction as many times as would fit in the duration since the last
 | 
						|
	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
 | 
						|
	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
 | 
						|
	 * reductions is doubled.
 | 
						|
	 */
 | 
						|
	nr_cycles = dur + ioc->dfgv_period_rem;
 | 
						|
	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
 | 
						|
 | 
						|
	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
 | 
						|
		u64 __maybe_unused old_debt, __maybe_unused old_delay;
 | 
						|
 | 
						|
		if (!iocg->abs_vdebt && !iocg->delay)
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock(&iocg->waitq.lock);
 | 
						|
 | 
						|
		old_debt = iocg->abs_vdebt;
 | 
						|
		old_delay = iocg->delay;
 | 
						|
 | 
						|
		nr_cycles_shift = min_t(u64, nr_cycles, BITS_PER_LONG - 1);
 | 
						|
		if (iocg->abs_vdebt)
 | 
						|
			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles_shift ?: 1;
 | 
						|
 | 
						|
		if (iocg->delay)
 | 
						|
			iocg->delay = iocg->delay >> nr_cycles_shift ?: 1;
 | 
						|
 | 
						|
		iocg_kick_waitq(iocg, true, now);
 | 
						|
 | 
						|
		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
 | 
						|
				old_debt, iocg->abs_vdebt,
 | 
						|
				old_delay, iocg->delay);
 | 
						|
 | 
						|
		spin_unlock(&iocg->waitq.lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check the active iocgs' state to avoid oversleeping and deactive
 | 
						|
 * idle iocgs.
 | 
						|
 *
 | 
						|
 * Since waiters determine the sleep durations based on the vrate
 | 
						|
 * they saw at the time of sleep, if vrate has increased, some
 | 
						|
 * waiters could be sleeping for too long. Wake up tardy waiters
 | 
						|
 * which should have woken up in the last period and expire idle
 | 
						|
 * iocgs.
 | 
						|
 */
 | 
						|
static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
 | 
						|
{
 | 
						|
	int nr_debtors = 0;
 | 
						|
	struct ioc_gq *iocg, *tiocg;
 | 
						|
 | 
						|
	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
 | 
						|
		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
 | 
						|
		    !iocg->delay && !iocg_is_idle(iocg))
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock(&iocg->waitq.lock);
 | 
						|
 | 
						|
		/* flush wait and indebt stat deltas */
 | 
						|
		if (iocg->wait_since) {
 | 
						|
			iocg->stat.wait_us += now->now - iocg->wait_since;
 | 
						|
			iocg->wait_since = now->now;
 | 
						|
		}
 | 
						|
		if (iocg->indebt_since) {
 | 
						|
			iocg->stat.indebt_us +=
 | 
						|
				now->now - iocg->indebt_since;
 | 
						|
			iocg->indebt_since = now->now;
 | 
						|
		}
 | 
						|
		if (iocg->indelay_since) {
 | 
						|
			iocg->stat.indelay_us +=
 | 
						|
				now->now - iocg->indelay_since;
 | 
						|
			iocg->indelay_since = now->now;
 | 
						|
		}
 | 
						|
 | 
						|
		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
 | 
						|
		    iocg->delay) {
 | 
						|
			/* might be oversleeping vtime / hweight changes, kick */
 | 
						|
			iocg_kick_waitq(iocg, true, now);
 | 
						|
			if (iocg->abs_vdebt || iocg->delay)
 | 
						|
				nr_debtors++;
 | 
						|
		} else if (iocg_is_idle(iocg)) {
 | 
						|
			/* no waiter and idle, deactivate */
 | 
						|
			u64 vtime = atomic64_read(&iocg->vtime);
 | 
						|
			s64 excess;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * @iocg has been inactive for a full duration and will
 | 
						|
			 * have a high budget. Account anything above target as
 | 
						|
			 * error and throw away. On reactivation, it'll start
 | 
						|
			 * with the target budget.
 | 
						|
			 */
 | 
						|
			excess = now->vnow - vtime - ioc->margins.target;
 | 
						|
			if (excess > 0) {
 | 
						|
				u32 old_hwi;
 | 
						|
 | 
						|
				current_hweight(iocg, NULL, &old_hwi);
 | 
						|
				ioc->vtime_err -= div64_u64(excess * old_hwi,
 | 
						|
							    WEIGHT_ONE);
 | 
						|
			}
 | 
						|
 | 
						|
			TRACE_IOCG_PATH(iocg_idle, iocg, now,
 | 
						|
					atomic64_read(&iocg->active_period),
 | 
						|
					atomic64_read(&ioc->cur_period), vtime);
 | 
						|
			__propagate_weights(iocg, 0, 0, false, now);
 | 
						|
			list_del_init(&iocg->active_list);
 | 
						|
		}
 | 
						|
 | 
						|
		spin_unlock(&iocg->waitq.lock);
 | 
						|
	}
 | 
						|
 | 
						|
	commit_weights(ioc);
 | 
						|
	return nr_debtors;
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_timer_fn(struct timer_list *timer)
 | 
						|
{
 | 
						|
	struct ioc *ioc = container_of(timer, struct ioc, timer);
 | 
						|
	struct ioc_gq *iocg, *tiocg;
 | 
						|
	struct ioc_now now;
 | 
						|
	LIST_HEAD(surpluses);
 | 
						|
	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
 | 
						|
	u64 usage_us_sum = 0;
 | 
						|
	u32 ppm_rthr;
 | 
						|
	u32 ppm_wthr;
 | 
						|
	u32 missed_ppm[2], rq_wait_pct;
 | 
						|
	u64 period_vtime;
 | 
						|
	int prev_busy_level;
 | 
						|
 | 
						|
	/* how were the latencies during the period? */
 | 
						|
	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
 | 
						|
 | 
						|
	/* take care of active iocgs */
 | 
						|
	spin_lock_irq(&ioc->lock);
 | 
						|
 | 
						|
	ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
 | 
						|
	ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
 | 
						|
	ioc_now(ioc, &now);
 | 
						|
 | 
						|
	period_vtime = now.vnow - ioc->period_at_vtime;
 | 
						|
	if (WARN_ON_ONCE(!period_vtime)) {
 | 
						|
		spin_unlock_irq(&ioc->lock);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	nr_debtors = ioc_check_iocgs(ioc, &now);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Wait and indebt stat are flushed above and the donation calculation
 | 
						|
	 * below needs updated usage stat. Let's bring stat up-to-date.
 | 
						|
	 */
 | 
						|
	iocg_flush_stat(&ioc->active_iocgs, &now);
 | 
						|
 | 
						|
	/* calc usage and see whether some weights need to be moved around */
 | 
						|
	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
 | 
						|
		u64 vdone, vtime, usage_us;
 | 
						|
		u32 hw_active, hw_inuse;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Collect unused and wind vtime closer to vnow to prevent
 | 
						|
		 * iocgs from accumulating a large amount of budget.
 | 
						|
		 */
 | 
						|
		vdone = atomic64_read(&iocg->done_vtime);
 | 
						|
		vtime = atomic64_read(&iocg->vtime);
 | 
						|
		current_hweight(iocg, &hw_active, &hw_inuse);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Latency QoS detection doesn't account for IOs which are
 | 
						|
		 * in-flight for longer than a period.  Detect them by
 | 
						|
		 * comparing vdone against period start.  If lagging behind
 | 
						|
		 * IOs from past periods, don't increase vrate.
 | 
						|
		 */
 | 
						|
		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
 | 
						|
		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
 | 
						|
		    time_after64(vtime, vdone) &&
 | 
						|
		    time_after64(vtime, now.vnow -
 | 
						|
				 MAX_LAGGING_PERIODS * period_vtime) &&
 | 
						|
		    time_before64(vdone, now.vnow - period_vtime))
 | 
						|
			nr_lagging++;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Determine absolute usage factoring in in-flight IOs to avoid
 | 
						|
		 * high-latency completions appearing as idle.
 | 
						|
		 */
 | 
						|
		usage_us = iocg->usage_delta_us;
 | 
						|
		usage_us_sum += usage_us;
 | 
						|
 | 
						|
		/* see whether there's surplus vtime */
 | 
						|
		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
 | 
						|
		if (hw_inuse < hw_active ||
 | 
						|
		    (!waitqueue_active(&iocg->waitq) &&
 | 
						|
		     time_before64(vtime, now.vnow - ioc->margins.low))) {
 | 
						|
			u32 hwa, old_hwi, hwm, new_hwi, usage;
 | 
						|
			u64 usage_dur;
 | 
						|
 | 
						|
			if (vdone != vtime) {
 | 
						|
				u64 inflight_us = DIV64_U64_ROUND_UP(
 | 
						|
					cost_to_abs_cost(vtime - vdone, hw_inuse),
 | 
						|
					ioc->vtime_base_rate);
 | 
						|
 | 
						|
				usage_us = max(usage_us, inflight_us);
 | 
						|
			}
 | 
						|
 | 
						|
			/* convert to hweight based usage ratio */
 | 
						|
			if (time_after64(iocg->activated_at, ioc->period_at))
 | 
						|
				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
 | 
						|
			else
 | 
						|
				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
 | 
						|
 | 
						|
			usage = clamp_t(u32,
 | 
						|
				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
 | 
						|
						   usage_dur),
 | 
						|
				1, WEIGHT_ONE);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Already donating or accumulated enough to start.
 | 
						|
			 * Determine the donation amount.
 | 
						|
			 */
 | 
						|
			current_hweight(iocg, &hwa, &old_hwi);
 | 
						|
			hwm = current_hweight_max(iocg);
 | 
						|
			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
 | 
						|
							 usage, &now);
 | 
						|
			/*
 | 
						|
			 * Donation calculation assumes hweight_after_donation
 | 
						|
			 * to be positive, a condition that a donor w/ hwa < 2
 | 
						|
			 * can't meet. Don't bother with donation if hwa is
 | 
						|
			 * below 2. It's not gonna make a meaningful difference
 | 
						|
			 * anyway.
 | 
						|
			 */
 | 
						|
			if (new_hwi < hwm && hwa >= 2) {
 | 
						|
				iocg->hweight_donating = hwa;
 | 
						|
				iocg->hweight_after_donation = new_hwi;
 | 
						|
				list_add(&iocg->surplus_list, &surpluses);
 | 
						|
			} else if (!iocg->abs_vdebt) {
 | 
						|
				/*
 | 
						|
				 * @iocg doesn't have enough to donate. Reset
 | 
						|
				 * its inuse to active.
 | 
						|
				 *
 | 
						|
				 * Don't reset debtors as their inuse's are
 | 
						|
				 * owned by debt handling. This shouldn't affect
 | 
						|
				 * donation calculuation in any meaningful way
 | 
						|
				 * as @iocg doesn't have a meaningful amount of
 | 
						|
				 * share anyway.
 | 
						|
				 */
 | 
						|
				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
 | 
						|
						iocg->inuse, iocg->active,
 | 
						|
						iocg->hweight_inuse, new_hwi);
 | 
						|
 | 
						|
				__propagate_weights(iocg, iocg->active,
 | 
						|
						    iocg->active, true, &now);
 | 
						|
				nr_shortages++;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			/* genuinely short on vtime */
 | 
						|
			nr_shortages++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!list_empty(&surpluses) && nr_shortages)
 | 
						|
		transfer_surpluses(&surpluses, &now);
 | 
						|
 | 
						|
	commit_weights(ioc);
 | 
						|
 | 
						|
	/* surplus list should be dissolved after use */
 | 
						|
	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
 | 
						|
		list_del_init(&iocg->surplus_list);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If q is getting clogged or we're missing too much, we're issuing
 | 
						|
	 * too much IO and should lower vtime rate.  If we're not missing
 | 
						|
	 * and experiencing shortages but not surpluses, we're too stingy
 | 
						|
	 * and should increase vtime rate.
 | 
						|
	 */
 | 
						|
	prev_busy_level = ioc->busy_level;
 | 
						|
	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
 | 
						|
	    missed_ppm[READ] > ppm_rthr ||
 | 
						|
	    missed_ppm[WRITE] > ppm_wthr) {
 | 
						|
		/* clearly missing QoS targets, slow down vrate */
 | 
						|
		ioc->busy_level = max(ioc->busy_level, 0);
 | 
						|
		ioc->busy_level++;
 | 
						|
	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
 | 
						|
		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
 | 
						|
		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
 | 
						|
		/* QoS targets are being met with >25% margin */
 | 
						|
		if (nr_shortages) {
 | 
						|
			/*
 | 
						|
			 * We're throttling while the device has spare
 | 
						|
			 * capacity.  If vrate was being slowed down, stop.
 | 
						|
			 */
 | 
						|
			ioc->busy_level = min(ioc->busy_level, 0);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If there are IOs spanning multiple periods, wait
 | 
						|
			 * them out before pushing the device harder.
 | 
						|
			 */
 | 
						|
			if (!nr_lagging)
 | 
						|
				ioc->busy_level--;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Nobody is being throttled and the users aren't
 | 
						|
			 * issuing enough IOs to saturate the device.  We
 | 
						|
			 * simply don't know how close the device is to
 | 
						|
			 * saturation.  Coast.
 | 
						|
			 */
 | 
						|
			ioc->busy_level = 0;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* inside the hysterisis margin, we're good */
 | 
						|
		ioc->busy_level = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
 | 
						|
 | 
						|
	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
 | 
						|
			      prev_busy_level, missed_ppm);
 | 
						|
 | 
						|
	ioc_refresh_params(ioc, false);
 | 
						|
 | 
						|
	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This period is done.  Move onto the next one.  If nothing's
 | 
						|
	 * going on with the device, stop the timer.
 | 
						|
	 */
 | 
						|
	atomic64_inc(&ioc->cur_period);
 | 
						|
 | 
						|
	if (ioc->running != IOC_STOP) {
 | 
						|
		if (!list_empty(&ioc->active_iocgs)) {
 | 
						|
			ioc_start_period(ioc, &now);
 | 
						|
		} else {
 | 
						|
			ioc->busy_level = 0;
 | 
						|
			ioc->vtime_err = 0;
 | 
						|
			ioc->running = IOC_IDLE;
 | 
						|
		}
 | 
						|
 | 
						|
		ioc_refresh_vrate(ioc, &now);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
}
 | 
						|
 | 
						|
static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
 | 
						|
				      u64 abs_cost, struct ioc_now *now)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	struct ioc_margins *margins = &ioc->margins;
 | 
						|
	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
 | 
						|
	u32 hwi, adj_step;
 | 
						|
	s64 margin;
 | 
						|
	u64 cost, new_inuse;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	current_hweight(iocg, NULL, &hwi);
 | 
						|
	old_hwi = hwi;
 | 
						|
	cost = abs_cost_to_cost(abs_cost, hwi);
 | 
						|
	margin = now->vnow - vtime - cost;
 | 
						|
 | 
						|
	/* debt handling owns inuse for debtors */
 | 
						|
	if (iocg->abs_vdebt)
 | 
						|
		return cost;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We only increase inuse during period and do so if the margin has
 | 
						|
	 * deteriorated since the previous adjustment.
 | 
						|
	 */
 | 
						|
	if (margin >= iocg->saved_margin || margin >= margins->low ||
 | 
						|
	    iocg->inuse == iocg->active)
 | 
						|
		return cost;
 | 
						|
 | 
						|
	spin_lock_irqsave(&ioc->lock, flags);
 | 
						|
 | 
						|
	/* we own inuse only when @iocg is in the normal active state */
 | 
						|
	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
 | 
						|
		spin_unlock_irqrestore(&ioc->lock, flags);
 | 
						|
		return cost;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Bump up inuse till @abs_cost fits in the existing budget.
 | 
						|
	 * adj_step must be determined after acquiring ioc->lock - we might
 | 
						|
	 * have raced and lost to another thread for activation and could
 | 
						|
	 * be reading 0 iocg->active before ioc->lock which will lead to
 | 
						|
	 * infinite loop.
 | 
						|
	 */
 | 
						|
	new_inuse = iocg->inuse;
 | 
						|
	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
 | 
						|
	do {
 | 
						|
		new_inuse = new_inuse + adj_step;
 | 
						|
		propagate_weights(iocg, iocg->active, new_inuse, true, now);
 | 
						|
		current_hweight(iocg, NULL, &hwi);
 | 
						|
		cost = abs_cost_to_cost(abs_cost, hwi);
 | 
						|
	} while (time_after64(vtime + cost, now->vnow) &&
 | 
						|
		 iocg->inuse != iocg->active);
 | 
						|
 | 
						|
	spin_unlock_irqrestore(&ioc->lock, flags);
 | 
						|
 | 
						|
	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
 | 
						|
			old_inuse, iocg->inuse, old_hwi, hwi);
 | 
						|
 | 
						|
	return cost;
 | 
						|
}
 | 
						|
 | 
						|
static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
 | 
						|
				    bool is_merge, u64 *costp)
 | 
						|
{
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	u64 coef_seqio, coef_randio, coef_page;
 | 
						|
	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
 | 
						|
	u64 seek_pages = 0;
 | 
						|
	u64 cost = 0;
 | 
						|
 | 
						|
	/* Can't calculate cost for empty bio */
 | 
						|
	if (!bio->bi_iter.bi_size)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	switch (bio_op(bio)) {
 | 
						|
	case REQ_OP_READ:
 | 
						|
		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
 | 
						|
		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
 | 
						|
		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
 | 
						|
		break;
 | 
						|
	case REQ_OP_WRITE:
 | 
						|
		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
 | 
						|
		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
 | 
						|
		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (iocg->cursor) {
 | 
						|
		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
 | 
						|
		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!is_merge) {
 | 
						|
		if (seek_pages > LCOEF_RANDIO_PAGES) {
 | 
						|
			cost += coef_randio;
 | 
						|
		} else {
 | 
						|
			cost += coef_seqio;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	cost += pages * coef_page;
 | 
						|
out:
 | 
						|
	*costp = cost;
 | 
						|
}
 | 
						|
 | 
						|
static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
 | 
						|
{
 | 
						|
	u64 cost;
 | 
						|
 | 
						|
	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
 | 
						|
	return cost;
 | 
						|
}
 | 
						|
 | 
						|
static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
 | 
						|
					 u64 *costp)
 | 
						|
{
 | 
						|
	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
 | 
						|
 | 
						|
	switch (req_op(rq)) {
 | 
						|
	case REQ_OP_READ:
 | 
						|
		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
 | 
						|
		break;
 | 
						|
	case REQ_OP_WRITE:
 | 
						|
		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		*costp = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
 | 
						|
{
 | 
						|
	u64 cost;
 | 
						|
 | 
						|
	calc_size_vtime_cost_builtin(rq, ioc, &cost);
 | 
						|
	return cost;
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
 | 
						|
{
 | 
						|
	struct blkcg_gq *blkg = bio->bi_blkg;
 | 
						|
	struct ioc *ioc = rqos_to_ioc(rqos);
 | 
						|
	struct ioc_gq *iocg = blkg_to_iocg(blkg);
 | 
						|
	struct ioc_now now;
 | 
						|
	struct iocg_wait wait;
 | 
						|
	u64 abs_cost, cost, vtime;
 | 
						|
	bool use_debt, ioc_locked;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* bypass IOs if disabled, still initializing, or for root cgroup */
 | 
						|
	if (!ioc->enabled || !iocg || !iocg->level)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* calculate the absolute vtime cost */
 | 
						|
	abs_cost = calc_vtime_cost(bio, iocg, false);
 | 
						|
	if (!abs_cost)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!iocg_activate(iocg, &now))
 | 
						|
		return;
 | 
						|
 | 
						|
	iocg->cursor = bio_end_sector(bio);
 | 
						|
	vtime = atomic64_read(&iocg->vtime);
 | 
						|
	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If no one's waiting and within budget, issue right away.  The
 | 
						|
	 * tests are racy but the races aren't systemic - we only miss once
 | 
						|
	 * in a while which is fine.
 | 
						|
	 */
 | 
						|
	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
 | 
						|
	    time_before_eq64(vtime + cost, now.vnow)) {
 | 
						|
		iocg_commit_bio(iocg, bio, abs_cost, cost);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're over budget. This can be handled in two ways. IOs which may
 | 
						|
	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
 | 
						|
	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
 | 
						|
	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
 | 
						|
	 * whether debt handling is needed and acquire locks accordingly.
 | 
						|
	 */
 | 
						|
	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
 | 
						|
	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
 | 
						|
retry_lock:
 | 
						|
	iocg_lock(iocg, ioc_locked, &flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * @iocg must stay activated for debt and waitq handling. Deactivation
 | 
						|
	 * is synchronized against both ioc->lock and waitq.lock and we won't
 | 
						|
	 * get deactivated as long as we're waiting or has debt, so we're good
 | 
						|
	 * if we're activated here. In the unlikely cases that we aren't, just
 | 
						|
	 * issue the IO.
 | 
						|
	 */
 | 
						|
	if (unlikely(list_empty(&iocg->active_list))) {
 | 
						|
		iocg_unlock(iocg, ioc_locked, &flags);
 | 
						|
		iocg_commit_bio(iocg, bio, abs_cost, cost);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're over budget. If @bio has to be issued regardless, remember
 | 
						|
	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
 | 
						|
	 * off the debt before waking more IOs.
 | 
						|
	 *
 | 
						|
	 * This way, the debt is continuously paid off each period with the
 | 
						|
	 * actual budget available to the cgroup. If we just wound vtime, we
 | 
						|
	 * would incorrectly use the current hw_inuse for the entire amount
 | 
						|
	 * which, for example, can lead to the cgroup staying blocked for a
 | 
						|
	 * long time even with substantially raised hw_inuse.
 | 
						|
	 *
 | 
						|
	 * An iocg with vdebt should stay online so that the timer can keep
 | 
						|
	 * deducting its vdebt and [de]activate use_delay mechanism
 | 
						|
	 * accordingly. We don't want to race against the timer trying to
 | 
						|
	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
 | 
						|
	 * penalizing the cgroup and its descendants.
 | 
						|
	 */
 | 
						|
	if (use_debt) {
 | 
						|
		iocg_incur_debt(iocg, abs_cost, &now);
 | 
						|
		if (iocg_kick_delay(iocg, &now))
 | 
						|
			blkcg_schedule_throttle(rqos->disk,
 | 
						|
					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
 | 
						|
		iocg_unlock(iocg, ioc_locked, &flags);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* guarantee that iocgs w/ waiters have maximum inuse */
 | 
						|
	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
 | 
						|
		if (!ioc_locked) {
 | 
						|
			iocg_unlock(iocg, false, &flags);
 | 
						|
			ioc_locked = true;
 | 
						|
			goto retry_lock;
 | 
						|
		}
 | 
						|
		propagate_weights(iocg, iocg->active, iocg->active, true,
 | 
						|
				  &now);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Append self to the waitq and schedule the wakeup timer if we're
 | 
						|
	 * the first waiter.  The timer duration is calculated based on the
 | 
						|
	 * current vrate.  vtime and hweight changes can make it too short
 | 
						|
	 * or too long.  Each wait entry records the absolute cost it's
 | 
						|
	 * waiting for to allow re-evaluation using a custom wait entry.
 | 
						|
	 *
 | 
						|
	 * If too short, the timer simply reschedules itself.  If too long,
 | 
						|
	 * the period timer will notice and trigger wakeups.
 | 
						|
	 *
 | 
						|
	 * All waiters are on iocg->waitq and the wait states are
 | 
						|
	 * synchronized using waitq.lock.
 | 
						|
	 */
 | 
						|
	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
 | 
						|
	wait.wait.private = current;
 | 
						|
	wait.bio = bio;
 | 
						|
	wait.abs_cost = abs_cost;
 | 
						|
	wait.committed = false;	/* will be set true by waker */
 | 
						|
 | 
						|
	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
 | 
						|
	iocg_kick_waitq(iocg, ioc_locked, &now);
 | 
						|
 | 
						|
	iocg_unlock(iocg, ioc_locked, &flags);
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		set_current_state(TASK_UNINTERRUPTIBLE);
 | 
						|
		if (wait.committed)
 | 
						|
			break;
 | 
						|
		io_schedule();
 | 
						|
	}
 | 
						|
 | 
						|
	/* waker already committed us, proceed */
 | 
						|
	finish_wait(&iocg->waitq, &wait.wait);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
 | 
						|
			   struct bio *bio)
 | 
						|
{
 | 
						|
	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
 | 
						|
	struct ioc *ioc = rqos_to_ioc(rqos);
 | 
						|
	sector_t bio_end = bio_end_sector(bio);
 | 
						|
	struct ioc_now now;
 | 
						|
	u64 vtime, abs_cost, cost;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/* bypass if disabled, still initializing, or for root cgroup */
 | 
						|
	if (!ioc->enabled || !iocg || !iocg->level)
 | 
						|
		return;
 | 
						|
 | 
						|
	abs_cost = calc_vtime_cost(bio, iocg, true);
 | 
						|
	if (!abs_cost)
 | 
						|
		return;
 | 
						|
 | 
						|
	ioc_now(ioc, &now);
 | 
						|
 | 
						|
	vtime = atomic64_read(&iocg->vtime);
 | 
						|
	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
 | 
						|
 | 
						|
	/* update cursor if backmerging into the request at the cursor */
 | 
						|
	if (blk_rq_pos(rq) < bio_end &&
 | 
						|
	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
 | 
						|
		iocg->cursor = bio_end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Charge if there's enough vtime budget and the existing request has
 | 
						|
	 * cost assigned.
 | 
						|
	 */
 | 
						|
	if (rq->bio && rq->bio->bi_iocost_cost &&
 | 
						|
	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
 | 
						|
		iocg_commit_bio(iocg, bio, abs_cost, cost);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise, account it as debt if @iocg is online, which it should
 | 
						|
	 * be for the vast majority of cases. See debt handling in
 | 
						|
	 * ioc_rqos_throttle() for details.
 | 
						|
	 */
 | 
						|
	spin_lock_irqsave(&ioc->lock, flags);
 | 
						|
	spin_lock(&iocg->waitq.lock);
 | 
						|
 | 
						|
	if (likely(!list_empty(&iocg->active_list))) {
 | 
						|
		iocg_incur_debt(iocg, abs_cost, &now);
 | 
						|
		if (iocg_kick_delay(iocg, &now))
 | 
						|
			blkcg_schedule_throttle(rqos->disk,
 | 
						|
					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
 | 
						|
	} else {
 | 
						|
		iocg_commit_bio(iocg, bio, abs_cost, cost);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock(&iocg->waitq.lock);
 | 
						|
	spin_unlock_irqrestore(&ioc->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
 | 
						|
{
 | 
						|
	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
 | 
						|
 | 
						|
	if (iocg && bio->bi_iocost_cost)
 | 
						|
		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
 | 
						|
{
 | 
						|
	struct ioc *ioc = rqos_to_ioc(rqos);
 | 
						|
	struct ioc_pcpu_stat *ccs;
 | 
						|
	u64 on_q_ns, rq_wait_ns, size_nsec;
 | 
						|
	int pidx, rw;
 | 
						|
 | 
						|
	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
 | 
						|
		return;
 | 
						|
 | 
						|
	switch (req_op(rq)) {
 | 
						|
	case REQ_OP_READ:
 | 
						|
		pidx = QOS_RLAT;
 | 
						|
		rw = READ;
 | 
						|
		break;
 | 
						|
	case REQ_OP_WRITE:
 | 
						|
		pidx = QOS_WLAT;
 | 
						|
		rw = WRITE;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	on_q_ns = blk_time_get_ns() - rq->alloc_time_ns;
 | 
						|
	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
 | 
						|
	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
 | 
						|
 | 
						|
	ccs = get_cpu_ptr(ioc->pcpu_stat);
 | 
						|
 | 
						|
	if (on_q_ns <= size_nsec ||
 | 
						|
	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
 | 
						|
		local_inc(&ccs->missed[rw].nr_met);
 | 
						|
	else
 | 
						|
		local_inc(&ccs->missed[rw].nr_missed);
 | 
						|
 | 
						|
	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
 | 
						|
 | 
						|
	put_cpu_ptr(ccs);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
 | 
						|
{
 | 
						|
	struct ioc *ioc = rqos_to_ioc(rqos);
 | 
						|
 | 
						|
	spin_lock_irq(&ioc->lock);
 | 
						|
	ioc_refresh_params(ioc, false);
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_rqos_exit(struct rq_qos *rqos)
 | 
						|
{
 | 
						|
	struct ioc *ioc = rqos_to_ioc(rqos);
 | 
						|
 | 
						|
	blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
 | 
						|
 | 
						|
	spin_lock_irq(&ioc->lock);
 | 
						|
	ioc->running = IOC_STOP;
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
 | 
						|
	timer_shutdown_sync(&ioc->timer);
 | 
						|
	free_percpu(ioc->pcpu_stat);
 | 
						|
	kfree(ioc);
 | 
						|
}
 | 
						|
 | 
						|
static const struct rq_qos_ops ioc_rqos_ops = {
 | 
						|
	.throttle = ioc_rqos_throttle,
 | 
						|
	.merge = ioc_rqos_merge,
 | 
						|
	.done_bio = ioc_rqos_done_bio,
 | 
						|
	.done = ioc_rqos_done,
 | 
						|
	.queue_depth_changed = ioc_rqos_queue_depth_changed,
 | 
						|
	.exit = ioc_rqos_exit,
 | 
						|
};
 | 
						|
 | 
						|
static int blk_iocost_init(struct gendisk *disk)
 | 
						|
{
 | 
						|
	struct ioc *ioc;
 | 
						|
	int i, cpu, ret;
 | 
						|
 | 
						|
	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
 | 
						|
	if (!ioc)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
 | 
						|
	if (!ioc->pcpu_stat) {
 | 
						|
		kfree(ioc);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
 | 
						|
 | 
						|
		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
 | 
						|
			local_set(&ccs->missed[i].nr_met, 0);
 | 
						|
			local_set(&ccs->missed[i].nr_missed, 0);
 | 
						|
		}
 | 
						|
		local64_set(&ccs->rq_wait_ns, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_init(&ioc->lock);
 | 
						|
	timer_setup(&ioc->timer, ioc_timer_fn, 0);
 | 
						|
	INIT_LIST_HEAD(&ioc->active_iocgs);
 | 
						|
 | 
						|
	ioc->running = IOC_IDLE;
 | 
						|
	ioc->vtime_base_rate = VTIME_PER_USEC;
 | 
						|
	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
 | 
						|
	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
 | 
						|
	ioc->period_at = ktime_to_us(blk_time_get());
 | 
						|
	atomic64_set(&ioc->cur_period, 0);
 | 
						|
	atomic_set(&ioc->hweight_gen, 0);
 | 
						|
 | 
						|
	spin_lock_irq(&ioc->lock);
 | 
						|
	ioc->autop_idx = AUTOP_INVALID;
 | 
						|
	ioc_refresh_params_disk(ioc, true, disk);
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * rqos must be added before activation to allow ioc_pd_init() to
 | 
						|
	 * lookup the ioc from q. This means that the rqos methods may get
 | 
						|
	 * called before policy activation completion, can't assume that the
 | 
						|
	 * target bio has an iocg associated and need to test for NULL iocg.
 | 
						|
	 */
 | 
						|
	ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
 | 
						|
	if (ret)
 | 
						|
		goto err_free_ioc;
 | 
						|
 | 
						|
	ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
 | 
						|
	if (ret)
 | 
						|
		goto err_del_qos;
 | 
						|
	return 0;
 | 
						|
 | 
						|
err_del_qos:
 | 
						|
	rq_qos_del(&ioc->rqos);
 | 
						|
err_free_ioc:
 | 
						|
	free_percpu(ioc->pcpu_stat);
 | 
						|
	kfree(ioc);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
 | 
						|
{
 | 
						|
	struct ioc_cgrp *iocc;
 | 
						|
 | 
						|
	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
 | 
						|
	if (!iocc)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
 | 
						|
	return &iocc->cpd;
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_cpd_free(struct blkcg_policy_data *cpd)
 | 
						|
{
 | 
						|
	kfree(container_of(cpd, struct ioc_cgrp, cpd));
 | 
						|
}
 | 
						|
 | 
						|
static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
 | 
						|
		struct blkcg *blkcg, gfp_t gfp)
 | 
						|
{
 | 
						|
	int levels = blkcg->css.cgroup->level + 1;
 | 
						|
	struct ioc_gq *iocg;
 | 
						|
 | 
						|
	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
 | 
						|
			    disk->node_id);
 | 
						|
	if (!iocg)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
 | 
						|
	if (!iocg->pcpu_stat) {
 | 
						|
		kfree(iocg);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return &iocg->pd;
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_pd_init(struct blkg_policy_data *pd)
 | 
						|
{
 | 
						|
	struct ioc_gq *iocg = pd_to_iocg(pd);
 | 
						|
	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
 | 
						|
	struct ioc *ioc = q_to_ioc(blkg->q);
 | 
						|
	struct ioc_now now;
 | 
						|
	struct blkcg_gq *tblkg;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	ioc_now(ioc, &now);
 | 
						|
 | 
						|
	iocg->ioc = ioc;
 | 
						|
	atomic64_set(&iocg->vtime, now.vnow);
 | 
						|
	atomic64_set(&iocg->done_vtime, now.vnow);
 | 
						|
	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
 | 
						|
	INIT_LIST_HEAD(&iocg->active_list);
 | 
						|
	INIT_LIST_HEAD(&iocg->walk_list);
 | 
						|
	INIT_LIST_HEAD(&iocg->surplus_list);
 | 
						|
	iocg->hweight_active = WEIGHT_ONE;
 | 
						|
	iocg->hweight_inuse = WEIGHT_ONE;
 | 
						|
 | 
						|
	init_waitqueue_head(&iocg->waitq);
 | 
						|
	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 | 
						|
	iocg->waitq_timer.function = iocg_waitq_timer_fn;
 | 
						|
 | 
						|
	iocg->level = blkg->blkcg->css.cgroup->level;
 | 
						|
 | 
						|
	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
 | 
						|
		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
 | 
						|
		iocg->ancestors[tiocg->level] = tiocg;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_irqsave(&ioc->lock, flags);
 | 
						|
	weight_updated(iocg, &now);
 | 
						|
	spin_unlock_irqrestore(&ioc->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_pd_free(struct blkg_policy_data *pd)
 | 
						|
{
 | 
						|
	struct ioc_gq *iocg = pd_to_iocg(pd);
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (ioc) {
 | 
						|
		spin_lock_irqsave(&ioc->lock, flags);
 | 
						|
 | 
						|
		if (!list_empty(&iocg->active_list)) {
 | 
						|
			struct ioc_now now;
 | 
						|
 | 
						|
			ioc_now(ioc, &now);
 | 
						|
			propagate_weights(iocg, 0, 0, false, &now);
 | 
						|
			list_del_init(&iocg->active_list);
 | 
						|
		}
 | 
						|
 | 
						|
		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
 | 
						|
		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
 | 
						|
 | 
						|
		spin_unlock_irqrestore(&ioc->lock, flags);
 | 
						|
 | 
						|
		hrtimer_cancel(&iocg->waitq_timer);
 | 
						|
	}
 | 
						|
	free_percpu(iocg->pcpu_stat);
 | 
						|
	kfree(iocg);
 | 
						|
}
 | 
						|
 | 
						|
static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
 | 
						|
{
 | 
						|
	struct ioc_gq *iocg = pd_to_iocg(pd);
 | 
						|
	struct ioc *ioc = iocg->ioc;
 | 
						|
 | 
						|
	if (!ioc->enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (iocg->level == 0) {
 | 
						|
		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
 | 
						|
			ioc->vtime_base_rate * 10000,
 | 
						|
			VTIME_PER_USEC);
 | 
						|
		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
 | 
						|
	}
 | 
						|
 | 
						|
	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
 | 
						|
 | 
						|
	if (blkcg_debug_stats)
 | 
						|
		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
 | 
						|
			iocg->last_stat.wait_us,
 | 
						|
			iocg->last_stat.indebt_us,
 | 
						|
			iocg->last_stat.indelay_us);
 | 
						|
}
 | 
						|
 | 
						|
static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
 | 
						|
			     int off)
 | 
						|
{
 | 
						|
	const char *dname = blkg_dev_name(pd->blkg);
 | 
						|
	struct ioc_gq *iocg = pd_to_iocg(pd);
 | 
						|
 | 
						|
	if (dname && iocg->cfg_weight)
 | 
						|
		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int ioc_weight_show(struct seq_file *sf, void *v)
 | 
						|
{
 | 
						|
	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
 | 
						|
	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
 | 
						|
 | 
						|
	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
 | 
						|
	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
 | 
						|
			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
 | 
						|
				size_t nbytes, loff_t off)
 | 
						|
{
 | 
						|
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
 | 
						|
	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
 | 
						|
	struct blkg_conf_ctx ctx;
 | 
						|
	struct ioc_now now;
 | 
						|
	struct ioc_gq *iocg;
 | 
						|
	u32 v;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!strchr(buf, ':')) {
 | 
						|
		struct blkcg_gq *blkg;
 | 
						|
 | 
						|
		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		spin_lock_irq(&blkcg->lock);
 | 
						|
		iocc->dfl_weight = v * WEIGHT_ONE;
 | 
						|
		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
 | 
						|
			struct ioc_gq *iocg = blkg_to_iocg(blkg);
 | 
						|
 | 
						|
			if (iocg) {
 | 
						|
				spin_lock(&iocg->ioc->lock);
 | 
						|
				ioc_now(iocg->ioc, &now);
 | 
						|
				weight_updated(iocg, &now);
 | 
						|
				spin_unlock(&iocg->ioc->lock);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		spin_unlock_irq(&blkcg->lock);
 | 
						|
 | 
						|
		return nbytes;
 | 
						|
	}
 | 
						|
 | 
						|
	blkg_conf_init(&ctx, buf);
 | 
						|
 | 
						|
	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
 | 
						|
	if (ret)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	iocg = blkg_to_iocg(ctx.blkg);
 | 
						|
 | 
						|
	if (!strncmp(ctx.body, "default", 7)) {
 | 
						|
		v = 0;
 | 
						|
	} else {
 | 
						|
		if (!sscanf(ctx.body, "%u", &v))
 | 
						|
			goto einval;
 | 
						|
		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
 | 
						|
			goto einval;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&iocg->ioc->lock);
 | 
						|
	iocg->cfg_weight = v * WEIGHT_ONE;
 | 
						|
	ioc_now(iocg->ioc, &now);
 | 
						|
	weight_updated(iocg, &now);
 | 
						|
	spin_unlock(&iocg->ioc->lock);
 | 
						|
 | 
						|
	blkg_conf_exit(&ctx);
 | 
						|
	return nbytes;
 | 
						|
 | 
						|
einval:
 | 
						|
	ret = -EINVAL;
 | 
						|
err:
 | 
						|
	blkg_conf_exit(&ctx);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
 | 
						|
			  int off)
 | 
						|
{
 | 
						|
	const char *dname = blkg_dev_name(pd->blkg);
 | 
						|
	struct ioc *ioc = pd_to_iocg(pd)->ioc;
 | 
						|
 | 
						|
	if (!dname)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	spin_lock(&ioc->lock);
 | 
						|
	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
 | 
						|
		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
 | 
						|
		   ioc->params.qos[QOS_RPPM] / 10000,
 | 
						|
		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
 | 
						|
		   ioc->params.qos[QOS_RLAT],
 | 
						|
		   ioc->params.qos[QOS_WPPM] / 10000,
 | 
						|
		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
 | 
						|
		   ioc->params.qos[QOS_WLAT],
 | 
						|
		   ioc->params.qos[QOS_MIN] / 10000,
 | 
						|
		   ioc->params.qos[QOS_MIN] % 10000 / 100,
 | 
						|
		   ioc->params.qos[QOS_MAX] / 10000,
 | 
						|
		   ioc->params.qos[QOS_MAX] % 10000 / 100);
 | 
						|
	spin_unlock(&ioc->lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ioc_qos_show(struct seq_file *sf, void *v)
 | 
						|
{
 | 
						|
	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
 | 
						|
 | 
						|
	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
 | 
						|
			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const match_table_t qos_ctrl_tokens = {
 | 
						|
	{ QOS_ENABLE,		"enable=%u"	},
 | 
						|
	{ QOS_CTRL,		"ctrl=%s"	},
 | 
						|
	{ NR_QOS_CTRL_PARAMS,	NULL		},
 | 
						|
};
 | 
						|
 | 
						|
static const match_table_t qos_tokens = {
 | 
						|
	{ QOS_RPPM,		"rpct=%s"	},
 | 
						|
	{ QOS_RLAT,		"rlat=%u"	},
 | 
						|
	{ QOS_WPPM,		"wpct=%s"	},
 | 
						|
	{ QOS_WLAT,		"wlat=%u"	},
 | 
						|
	{ QOS_MIN,		"min=%s"	},
 | 
						|
	{ QOS_MAX,		"max=%s"	},
 | 
						|
	{ NR_QOS_PARAMS,	NULL		},
 | 
						|
};
 | 
						|
 | 
						|
static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
 | 
						|
			     size_t nbytes, loff_t off)
 | 
						|
{
 | 
						|
	struct blkg_conf_ctx ctx;
 | 
						|
	struct gendisk *disk;
 | 
						|
	struct ioc *ioc;
 | 
						|
	u32 qos[NR_QOS_PARAMS];
 | 
						|
	bool enable, user;
 | 
						|
	char *body, *p;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	blkg_conf_init(&ctx, input);
 | 
						|
 | 
						|
	ret = blkg_conf_open_bdev(&ctx);
 | 
						|
	if (ret)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	body = ctx.body;
 | 
						|
	disk = ctx.bdev->bd_disk;
 | 
						|
	if (!queue_is_mq(disk->queue)) {
 | 
						|
		ret = -EOPNOTSUPP;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	ioc = q_to_ioc(disk->queue);
 | 
						|
	if (!ioc) {
 | 
						|
		ret = blk_iocost_init(disk);
 | 
						|
		if (ret)
 | 
						|
			goto err;
 | 
						|
		ioc = q_to_ioc(disk->queue);
 | 
						|
	}
 | 
						|
 | 
						|
	blk_mq_freeze_queue(disk->queue);
 | 
						|
	blk_mq_quiesce_queue(disk->queue);
 | 
						|
 | 
						|
	spin_lock_irq(&ioc->lock);
 | 
						|
	memcpy(qos, ioc->params.qos, sizeof(qos));
 | 
						|
	enable = ioc->enabled;
 | 
						|
	user = ioc->user_qos_params;
 | 
						|
 | 
						|
	while ((p = strsep(&body, " \t\n"))) {
 | 
						|
		substring_t args[MAX_OPT_ARGS];
 | 
						|
		char buf[32];
 | 
						|
		int tok;
 | 
						|
		s64 v;
 | 
						|
 | 
						|
		if (!*p)
 | 
						|
			continue;
 | 
						|
 | 
						|
		switch (match_token(p, qos_ctrl_tokens, args)) {
 | 
						|
		case QOS_ENABLE:
 | 
						|
			if (match_u64(&args[0], &v))
 | 
						|
				goto einval;
 | 
						|
			enable = v;
 | 
						|
			continue;
 | 
						|
		case QOS_CTRL:
 | 
						|
			match_strlcpy(buf, &args[0], sizeof(buf));
 | 
						|
			if (!strcmp(buf, "auto"))
 | 
						|
				user = false;
 | 
						|
			else if (!strcmp(buf, "user"))
 | 
						|
				user = true;
 | 
						|
			else
 | 
						|
				goto einval;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		tok = match_token(p, qos_tokens, args);
 | 
						|
		switch (tok) {
 | 
						|
		case QOS_RPPM:
 | 
						|
		case QOS_WPPM:
 | 
						|
			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
 | 
						|
			    sizeof(buf))
 | 
						|
				goto einval;
 | 
						|
			if (cgroup_parse_float(buf, 2, &v))
 | 
						|
				goto einval;
 | 
						|
			if (v < 0 || v > 10000)
 | 
						|
				goto einval;
 | 
						|
			qos[tok] = v * 100;
 | 
						|
			break;
 | 
						|
		case QOS_RLAT:
 | 
						|
		case QOS_WLAT:
 | 
						|
			if (match_u64(&args[0], &v))
 | 
						|
				goto einval;
 | 
						|
			qos[tok] = v;
 | 
						|
			break;
 | 
						|
		case QOS_MIN:
 | 
						|
		case QOS_MAX:
 | 
						|
			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
 | 
						|
			    sizeof(buf))
 | 
						|
				goto einval;
 | 
						|
			if (cgroup_parse_float(buf, 2, &v))
 | 
						|
				goto einval;
 | 
						|
			if (v < 0)
 | 
						|
				goto einval;
 | 
						|
			qos[tok] = clamp_t(s64, v * 100,
 | 
						|
					   VRATE_MIN_PPM, VRATE_MAX_PPM);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			goto einval;
 | 
						|
		}
 | 
						|
		user = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (qos[QOS_MIN] > qos[QOS_MAX])
 | 
						|
		goto einval;
 | 
						|
 | 
						|
	if (enable && !ioc->enabled) {
 | 
						|
		blk_stat_enable_accounting(disk->queue);
 | 
						|
		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
 | 
						|
		ioc->enabled = true;
 | 
						|
	} else if (!enable && ioc->enabled) {
 | 
						|
		blk_stat_disable_accounting(disk->queue);
 | 
						|
		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
 | 
						|
		ioc->enabled = false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (user) {
 | 
						|
		memcpy(ioc->params.qos, qos, sizeof(qos));
 | 
						|
		ioc->user_qos_params = true;
 | 
						|
	} else {
 | 
						|
		ioc->user_qos_params = false;
 | 
						|
	}
 | 
						|
 | 
						|
	ioc_refresh_params(ioc, true);
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
 | 
						|
	if (enable)
 | 
						|
		wbt_disable_default(disk);
 | 
						|
	else
 | 
						|
		wbt_enable_default(disk);
 | 
						|
 | 
						|
	blk_mq_unquiesce_queue(disk->queue);
 | 
						|
	blk_mq_unfreeze_queue(disk->queue);
 | 
						|
 | 
						|
	blkg_conf_exit(&ctx);
 | 
						|
	return nbytes;
 | 
						|
einval:
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
 | 
						|
	blk_mq_unquiesce_queue(disk->queue);
 | 
						|
	blk_mq_unfreeze_queue(disk->queue);
 | 
						|
 | 
						|
	ret = -EINVAL;
 | 
						|
err:
 | 
						|
	blkg_conf_exit(&ctx);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static u64 ioc_cost_model_prfill(struct seq_file *sf,
 | 
						|
				 struct blkg_policy_data *pd, int off)
 | 
						|
{
 | 
						|
	const char *dname = blkg_dev_name(pd->blkg);
 | 
						|
	struct ioc *ioc = pd_to_iocg(pd)->ioc;
 | 
						|
	u64 *u = ioc->params.i_lcoefs;
 | 
						|
 | 
						|
	if (!dname)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	spin_lock(&ioc->lock);
 | 
						|
	seq_printf(sf, "%s ctrl=%s model=linear "
 | 
						|
		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
 | 
						|
		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
 | 
						|
		   dname, ioc->user_cost_model ? "user" : "auto",
 | 
						|
		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
 | 
						|
		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
 | 
						|
	spin_unlock(&ioc->lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ioc_cost_model_show(struct seq_file *sf, void *v)
 | 
						|
{
 | 
						|
	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
 | 
						|
 | 
						|
	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
 | 
						|
			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const match_table_t cost_ctrl_tokens = {
 | 
						|
	{ COST_CTRL,		"ctrl=%s"	},
 | 
						|
	{ COST_MODEL,		"model=%s"	},
 | 
						|
	{ NR_COST_CTRL_PARAMS,	NULL		},
 | 
						|
};
 | 
						|
 | 
						|
static const match_table_t i_lcoef_tokens = {
 | 
						|
	{ I_LCOEF_RBPS,		"rbps=%u"	},
 | 
						|
	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
 | 
						|
	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
 | 
						|
	{ I_LCOEF_WBPS,		"wbps=%u"	},
 | 
						|
	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
 | 
						|
	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
 | 
						|
	{ NR_I_LCOEFS,		NULL		},
 | 
						|
};
 | 
						|
 | 
						|
static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
 | 
						|
				    size_t nbytes, loff_t off)
 | 
						|
{
 | 
						|
	struct blkg_conf_ctx ctx;
 | 
						|
	struct request_queue *q;
 | 
						|
	struct ioc *ioc;
 | 
						|
	u64 u[NR_I_LCOEFS];
 | 
						|
	bool user;
 | 
						|
	char *body, *p;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	blkg_conf_init(&ctx, input);
 | 
						|
 | 
						|
	ret = blkg_conf_open_bdev(&ctx);
 | 
						|
	if (ret)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	body = ctx.body;
 | 
						|
	q = bdev_get_queue(ctx.bdev);
 | 
						|
	if (!queue_is_mq(q)) {
 | 
						|
		ret = -EOPNOTSUPP;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	ioc = q_to_ioc(q);
 | 
						|
	if (!ioc) {
 | 
						|
		ret = blk_iocost_init(ctx.bdev->bd_disk);
 | 
						|
		if (ret)
 | 
						|
			goto err;
 | 
						|
		ioc = q_to_ioc(q);
 | 
						|
	}
 | 
						|
 | 
						|
	blk_mq_freeze_queue(q);
 | 
						|
	blk_mq_quiesce_queue(q);
 | 
						|
 | 
						|
	spin_lock_irq(&ioc->lock);
 | 
						|
	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
 | 
						|
	user = ioc->user_cost_model;
 | 
						|
 | 
						|
	while ((p = strsep(&body, " \t\n"))) {
 | 
						|
		substring_t args[MAX_OPT_ARGS];
 | 
						|
		char buf[32];
 | 
						|
		int tok;
 | 
						|
		u64 v;
 | 
						|
 | 
						|
		if (!*p)
 | 
						|
			continue;
 | 
						|
 | 
						|
		switch (match_token(p, cost_ctrl_tokens, args)) {
 | 
						|
		case COST_CTRL:
 | 
						|
			match_strlcpy(buf, &args[0], sizeof(buf));
 | 
						|
			if (!strcmp(buf, "auto"))
 | 
						|
				user = false;
 | 
						|
			else if (!strcmp(buf, "user"))
 | 
						|
				user = true;
 | 
						|
			else
 | 
						|
				goto einval;
 | 
						|
			continue;
 | 
						|
		case COST_MODEL:
 | 
						|
			match_strlcpy(buf, &args[0], sizeof(buf));
 | 
						|
			if (strcmp(buf, "linear"))
 | 
						|
				goto einval;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		tok = match_token(p, i_lcoef_tokens, args);
 | 
						|
		if (tok == NR_I_LCOEFS)
 | 
						|
			goto einval;
 | 
						|
		if (match_u64(&args[0], &v))
 | 
						|
			goto einval;
 | 
						|
		u[tok] = v;
 | 
						|
		user = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (user) {
 | 
						|
		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
 | 
						|
		ioc->user_cost_model = true;
 | 
						|
	} else {
 | 
						|
		ioc->user_cost_model = false;
 | 
						|
	}
 | 
						|
	ioc_refresh_params(ioc, true);
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
 | 
						|
	blk_mq_unquiesce_queue(q);
 | 
						|
	blk_mq_unfreeze_queue(q);
 | 
						|
 | 
						|
	blkg_conf_exit(&ctx);
 | 
						|
	return nbytes;
 | 
						|
 | 
						|
einval:
 | 
						|
	spin_unlock_irq(&ioc->lock);
 | 
						|
 | 
						|
	blk_mq_unquiesce_queue(q);
 | 
						|
	blk_mq_unfreeze_queue(q);
 | 
						|
 | 
						|
	ret = -EINVAL;
 | 
						|
err:
 | 
						|
	blkg_conf_exit(&ctx);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct cftype ioc_files[] = {
 | 
						|
	{
 | 
						|
		.name = "weight",
 | 
						|
		.flags = CFTYPE_NOT_ON_ROOT,
 | 
						|
		.seq_show = ioc_weight_show,
 | 
						|
		.write = ioc_weight_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "cost.qos",
 | 
						|
		.flags = CFTYPE_ONLY_ON_ROOT,
 | 
						|
		.seq_show = ioc_qos_show,
 | 
						|
		.write = ioc_qos_write,
 | 
						|
	},
 | 
						|
	{
 | 
						|
		.name = "cost.model",
 | 
						|
		.flags = CFTYPE_ONLY_ON_ROOT,
 | 
						|
		.seq_show = ioc_cost_model_show,
 | 
						|
		.write = ioc_cost_model_write,
 | 
						|
	},
 | 
						|
	{}
 | 
						|
};
 | 
						|
 | 
						|
static struct blkcg_policy blkcg_policy_iocost = {
 | 
						|
	.dfl_cftypes	= ioc_files,
 | 
						|
	.cpd_alloc_fn	= ioc_cpd_alloc,
 | 
						|
	.cpd_free_fn	= ioc_cpd_free,
 | 
						|
	.pd_alloc_fn	= ioc_pd_alloc,
 | 
						|
	.pd_init_fn	= ioc_pd_init,
 | 
						|
	.pd_free_fn	= ioc_pd_free,
 | 
						|
	.pd_stat_fn	= ioc_pd_stat,
 | 
						|
};
 | 
						|
 | 
						|
static int __init ioc_init(void)
 | 
						|
{
 | 
						|
	return blkcg_policy_register(&blkcg_policy_iocost);
 | 
						|
}
 | 
						|
 | 
						|
static void __exit ioc_exit(void)
 | 
						|
{
 | 
						|
	blkcg_policy_unregister(&blkcg_policy_iocost);
 | 
						|
}
 | 
						|
 | 
						|
module_init(ioc_init);
 | 
						|
module_exit(ioc_exit);
 |